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Abstract 
Biophysically plausible large-circuit models provide valuable mechanistic insights into neural 

dynamics. However, setting up a model involves numerous free parameters, which are often 

manually set, leading to assumptions that may not align with biological plausibility. In 

contrast, optimizing these parameters results in more biologically plausible models. Previous 

papers have shown that spatially heterogeneous parameters improve the model performance 

in generating realistic neural dynamics. Prior works have employed iterative forward 

simulations via Euler integration to optimize the parameters, which require solving ordinary 

differential equations (ODE) for all regions simultaneously and each time step sequentially. 

This process poses a computational hurdle for an efficient model inversion. To tackle this 

problem, we propose DELSSOME (Deep Learning for Surrogate Statistics Optimization in 

Mean Field Modeling), which integrates deep learning models into neural mass model 

framework to circumvent the need to solve ODEs. These deep learning models are designed 

to learn surrogate statistics, which directly provide outputs required for optimization, from 

the input local circuit parameters. Our experiments demonstrate that our approach leads to a 

remarkable 500,000% speed-up of parameter optimization process compared to the 

traditional approach while achieving comparable performances. Moreover, our approach 

successfully replicates previous findings on excitation-inhibition ratio changes related to 

neurodevelopment and cognition. Overall, our results suggest the efficiency and broader 

applicability of the proposed approach in uncovering intricate neural dynamics. 

 

  



1 Introduction 
Large-scale biophysically plausible models of coupled brain regions are developed to 

provide mechanistic insights into spontaneous brain dynamics (Honey et al., 2007; Ghosh et 

al., 2008; Shine et al., 2021; Singh et al., 2020; Zalesky et al., 2014). For instance, in fMRI 

datasets, previous works have shown that some models elucidate how resting-state functional 

connectivity (FC) arises from anatomical connections and how the balance of local excitation 

and inhibition influences global brain dynamics (Deco et al., 2013, 2014; Demirtaş et al., 

2019). 

However, leveraging these models to extract biological insights necessitates 

meticulous parameter optimization (Kong et al., 2021; S. Zhang et al., 2024). Typically, 

parameters are manually set, often through methods like grid searching across predefined 

ranges (Ghosh et al., 2008; Honey et al., 2009; Deco et al., 2013). However, such approaches 

are limited to models with few parameters, like those models that assume parameters to be 

identical for all brain regions (Deco et al., 2014; Trakoshis et al., 2020; Lam et al., 2022), 

restricting their ability to capture complex biophysical information. 

Capturing information across diverse brain regions requires heterogeneous parameters 

(Cardin et al., 2009; Burt et al., 2018; Huntenburg et al., 2018; Froudist-Walsh et al., 2021; 

Goulas et al., 2021). However, the parameter estimation process for heterogeneous models 

presents a significant challenge due to the computational burden associated with solving 

multiple coupled ordinary differential equations (ODEs) (Wang et al., 2019; Kringelbach & 

Deco, 2020; Deco et al., 2021; Kong et al., 2021; S. Zhang et al., 2024). The incorporation of 

heterogeneity significantly increases the number of ODEs and parameters, rendering 

traditional search methods impractical. Consequently, various algorithms are proposed for 

heterogeneous parameter optimization. As shown in prior works (Kong et al., 2021; S. Zhang 

et al., 2024), covariance matrix adaptation evolution strategy (CMA-ES) shows promising 

results (N. Hansen, 2006). However, this method often entails extensive iterations, with each 

iteration requiring computationally expensive Euler integration to simulate fMRI data for all 

cortical regions across multiple time steps. In other words, the computational burden of Euler 

integration is notable in both the spatial and temporal domains. Numerous regions of interest 

(ROIs) and a sufficiently small step size of Euler integration are required when using Euler 

integration to generate simulated fMRI data. As a result, Euler integration must be executed 

numerous times in both spatial and temporal domains, often numbering in the billions for a 

single iteration, which poses a substantial computational hurdle when optimizing parameters. 



To overcome the limitation, we considered leveraging deep learning, renowned for its 

capability as a universal approximator, to accelerate the process of parameter optimization. In 

this work, we proposed DELSSOME (DEep Learning for Surrogate Statistics Optimization in 

MEan field modeling) models. This approach involved training deep learning models to learn 

surrogate statistics, which meant, specifically, the hidden representations of biophysical 

parameters. These surrogate statistics could then be used to bypass Euler integration, 

providing accurate loss terms for evolutionary algorithms to iterate efficiently. 

To evaluate our approach, we started by exploring the efficacy of deep learning 

models in capturing surrogate statistics, employing the Human Connectome Project (HCP) 

S1200 release dataset (Glasser et al., 2013; Van Essen et al., 2013). The outcomes 

demonstrated strong performance, indicating that deep learning models can accurately 

capture surrogate statistics. These hidden representations could be directly leveraged to 

optimize parameters. In integrating these deep learning models into CMA-ES iterations, we 

adopted a new CMA-ES procedure called DELSSOME CMA-ES, enabling us to accelerate 

parameter optimization by 500,000% without compromising performance. Following this 

success, we validated our method's effectiveness using the Philadelphia Neurodevelopmental 

Cohort (PNC) dataset (Satterthwaite et al., 2014; Calkins et al., 2015), replicating previous 

findings regarding the Excitation/Inhibition (E/I) ratio during development and cognitive 

process (S. Zhang et al., 2024). 

Our work offers several significant contributions. First, it demonstrates the capability 

of deep learning models to capture crucial surrogate statistics within large-scale biophysical 

models. This ability opens avenues for enhanced understanding and analysis of complex 

brain dynamics. Secondly, by leveraging these surrogate statistics, we accelerate parameter 

optimization in large-scale biophysical models. This acceleration streamlines the research 

process and holds the potential to expedite discoveries pertaining to brain dynamics, thus 

contributing to advancements in neuroscience research. 

  



2 Methods 
2.1  Datasets 

2.1.1 Human Connectome Project (HCP) dataset 

We considered 1029 participants from the Human Connectome Project (HCP) S1200 

release (Glasser et al., 2013; Van Essen et al., 2013). These participants underwent scanning 

on a customized Siemens 3T Skyra using a multi-band sequence. Each participant completed 

four resting-state fMRI (resting-fMRI) runs in two sessions on two different days. The 

resting-fMRI runs had a repetition time (TR) of 0.72 s at 2 mm isotropic resolution, each 

lasting 14.4 minutes. Additionally, six runs of diffusion imaging were conducted, each lasting 

approximately 9 minutes and 50 seconds. Diffusion weighting consisted of 3 shells of b-

values (1000, 2000, and 3000 s/mm²) with approximately equal number of weighting 

directions on each shell. Further specifics of the data collection are available elsewhere (Van 

Essen et al., 2013). 

Preprocessing of the HCP data is detailed in the HCP S1200 manual. We utilized 

preprocessed (MSMAll) resting-fMRI data, already projected to fsLR surface space, denoised 

with ICA-FIX, and smoothed by 2 mm. For each run of each participant, the fMRI data were 

averaged within each Desikan–Killiany region of interest (ROI; Desikan et al., 2006) to 

create a 68 × 1200 matrix. These matrices were used to compute 68 × 68 functional 

connectivity (FC) matrices by correlating the time courses among all pairs of time courses. 

FC matrices were then averaged across runs of participants within a particular group of 

participants to produce group-averaged FC matrices. 

Functional connectivity dynamics (FCD) were computed by defining a 60-second 

window (equivalent to 83 time points or TRs) and sliding the window frame by frame, 

resulting in 1118 sliding windows (Hansen et al., 2015; Leonardi & Van De Ville, 2015). FC 

was computed within each sliding window for each participant's run. Each sliding window 

FC matrix was then vectorized by only considering the upper triangular entries. The 

vectorized FCs were correlated, resulting into a 1118 × 1118 FCD matrix. Unlike static FC, 

FCD matrices could not be directly averaged across participants due to the lack of temporal 

correspondence during resting-state. 

For diffusion MRI, probabilistic tractography was conducted for each participant 

using the second-order integration over fiber orientation distribution (iFOD2) algorithm 

provided by MRtrix3 (Tournier et al., 2010; Tournier et al., 2019). The Anatomically-

Constrained Tractography (ACT) (Smith et al., 2012) was performed on fiber orientation 



distribution (FOD) images. 5,000,000 streamlines were sampled to generate tractograms, 

which were then filtered using Spherical-deconvolution informed filtering of tracks (SIFT2; 

Smith et al., 2015). This generated a structural connectivity (SC) matrix for each participant, 

where each entry represented the number of streamlines between two ROIs. To generate a 

group-level SC matrix, a thresholding procedure was first applied to remove false positives. 

More specifically, if <50% of participants had a non-zero value in a particular entry in the SC 

matrix, then the entry is set to zero in all individual-level SC matrices. Then averaging across 

participants with non-zero streamlines, log-transforming the averaged values, and setting the 

main diagonal entries to zero were performed. Group-level SCs were computed separately for 

a particular group of participants, with the maximum value normalized to 0.02. 

 

2.1.2 Philadelphia Neurodevelopment Cohort (PNC) dataset 

Neuroimaging data were acquired from a community-based cohort comprising 1601 

youth aged 8.1 to 23.1 (mean = 14.94, standard deviation = 3.69, male/female = 764/837) 

enrolled in the Philadelphia Neurodevelopmental Cohort (PNC). Previous publications have 

provided comprehensive details regarding data collection procedures and participant 

demographics (Satterthwaite et al., 2014; Calkins et al., 2015). A single resting-fMRI scan 

was collected from each participant. Consistent with our previous work, after excluding 

individuals based on health criteria and stringent quality control measures, a total of 885 

participants (aged 8.2 to 23.0 at initial visit, mean = 15.66, standard deviation = 3.36) were 

retained (Zhang et al., 2024). 

All neuroimaging data were acquired using the Siemens Trio 3T scanner, with 

detailed descriptions of imaging protocols and acquisition parameters available elsewhere. In 

brief, parameters included TR = 3000 ms, TE = 32 ms, flip angle = 90°, FOV = 192 × 192 

mm², matrix = 64 × 64, 46 slices, slice thickness/gap = 3/0 mm, effective voxel resolution = 

3.0 × 3.0 × 3.0 mm³, and a total of 210 volumes. 

BOLD runs were slice time–corrected and then motion-corrected. Susceptibility 

distortion was estimated and used to compute a corrected BOLD reference for more accurate 

co-registration with the anatomical reference. The BOLD reference was co-registered to the 

T1w reference using boundary-based registration. Co-registration was configured with nine 

degrees of freedom to account for distortions remaining in the BOLD reference. Six head 

motion parameters (corresponding rotation and translation parameters) were estimated before 

any spatiotemporal filtering. The motion-correcting transformations and field distortion 



correcting warp were applied to the BOLD time series in a single step. Finally, the volumetric 

data was projected to fsaverage6 surface space. 

Nuisance regression incorporated anatomical CompCor (aCompCor), with principal 

components estimated after high-pass filtering of preprocessed BOLD time series (using a 

discrete cosine filter with a 128-s cutoff). Five CompCor components were extracted from 

cerebrospinal fluid (CSF) and white matter (WM) masks. In total, 17 regressors were jointly 

regressed from the BOLD time series, including 6 head motion parameters and their temporal 

derivatives, and top 5 aCompCor components. 

FC and FCD for the PNC datasets were computed in the same manner as the HCP 

dataset. However, due to a longer TR in the PNC dataset compared to the HCP dataset, the 

length of each sliding window for FCD matrix computation was set to 20 timepoints (or TRs) 

to maintain a consistent window length of 60 seconds. 

 

2.2 Parametric feedback inhibition control (pFIC) model 

Given the instantiation of the FIC model using the Desikan-Killiany parcellation with 

68 ROIs, achieving spatial heterogeneity for local circuit parameters 𝑤𝑤𝐸𝐸𝐸𝐸 ,𝑤𝑤𝐸𝐸𝐸𝐸 ,𝜎𝜎 (with G 

being a global constant) presented computational challenges. Direct optimization of each 

parameter independently would entail handling a total of 68 × 3 + 1 = 205 parameters. To 

tackle this problem, following our prior work (Kong et al., 2021; S. Zhang et al., 2024), we 

reduced the number of “free” parameters by parameterizing the local circuit parameters with 

a linear combination of the first principal FC gradient (Margulies et al., 2016) and T1w/T2w 

ratio map (Glasser & Van Essen, 2011). 

𝑤𝑤𝐸𝐸𝐸𝐸,𝑗𝑗 = 𝑎𝑎 + 𝑏𝑏 × T1w/T2w ratio𝑗𝑗 + 𝑐𝑐 × FC gradient𝑗𝑗                    (7) 

𝑤𝑤𝐸𝐸𝐸𝐸,𝑗𝑗 = 𝑑𝑑 + 𝑒𝑒 × T1w/T2w ratio𝑗𝑗 + 𝑓𝑓 × FC gradient𝑗𝑗                     (8) 

𝜎𝜎𝑗𝑗 = 𝑔𝑔 + ℎ × T1w/T2w ratio𝑗𝑗 + 𝑖𝑖 × FC gradient𝑗𝑗                      (9) 

where j denotes the ROI index. By employing this parameterization strategy, the number of 

“free” numbers was reduced to 3 × 3 + 1 = 10 parameters. 

 

2.3 Local circuit parameter optimization by CMA-ES 

Following our prior work (S. Zhang et al., 2024), covariance matrix adaptation 

evolution strategy (CMA-ES) (N. Hansen, 2006) was used to iteratively optimize local circuit 

parameters (Figure 1A). CMA-ES is an optimization technique used to find the best solution 

to complex problems by iteratively testing and improving potential solutions. It works by 



generating a group of candidates (solutions) and evaluating how well they perform. In each 

iteration, based on the performance of candidates, CMA-ES adjusts the "search direction" by 

learning which directions in the search space are most promising. In our case, it started with 

sampling 100 candidate local circuit parameters from an initialized Gaussian distribution. 

Simulated fMRI data were generated by running Euler forward simulations with local circuit 

parameters and structural connectivity (SC) matrices. After evaluation, 10 candidate 

parameters with best performance were used to update the sampling distribution for the next 

iteration. 

Evaluation of candidate parameters was based on the similarity between simulated 

and empirical fMRI data. The simulated fMRI data with firing rates outside the 

physiologically plausible range of 2.7 ~ 3.3 Hz (De Kock & Sakmann, 2008) were filtered 

out. For the remaining simulated fMRI data, given the inherent difficulty in directly 

measuring the similarity of two time series, we opted to quantify agreement through the 

comparison of extracted features from fMRI, specifically focusing on static functional 

connectivity (FC) and FC dynamics (FCD). We quantified the agreement between empirical 

and simulated FC using Pearson's correlation (r) and absolute difference between the means 

(d) (Demirtaş et al., 2019), as well as empirical and simulated FCD using KS statistics (KS). 

Parameters with the minimum loss, defined as (1-r) + d + KS, were used to initialize 

candidate parameters for the next iteration (Figure 1B).To alleviate the computational burden 

associated with Euler forward simulation in generating simulated fMRI data, we sought to 

integrate deep learning models into our workflow. Our objective was to develop models 

capable of effectively replacing Euler forward simulation. These models could identify and 

filter out parameter sets likely to generate simulated fMRI data outside of a predefined firing 

rate range (De Kock & Sakmann, 2008; Wilson et al., 1994). Additionally, these models 

needed to output loss metrics for updating CMA-ES iteration parameters. To fulfill these 

requirements, we designed two components: the DELSSOME out-of-range classifier and the 

DELSSOME loss predictor. Upon acquiring trained DELSSOME out-of-range classifier and 

DELSSOME loss predictor models, we could streamline and expedite the evaluation process, 

which was referred to as DELSSOME CMA-ES evaluation procedure (Figure 1C). After 

sampling 100 candidate local circuit parameter from a distribution, it involved a two-step 

procedure. First, the DELSSOME out-of-range classifier was utilized to identify and filter out 

parameter sets likely to yield fMRI data with firing rates outside the physiologically plausible 

range of 2.7 ~ 3.3 Hz (De Kock & Sakmann, 2008). This range was grounded in previous 

research indicating typical firing rates of excitatory neurons in the human brain cortex during 



resting state. Subsequently, the DELSSOME loss predictor directly predicted the three loss 

terms (1-r, d, KS). 10 parameters with the lowest loss are used for the initialization of 

candidate parameters distribution for subsequent iterations.  

 

2.4 Data generation 

 

 
Figure 1. CMA-ES workflow and evaluation procedures. (A) CMA-ES workflow. Local 
circuit parameters are sampled from an initial distribution. The local circuit parameters are 
then evaluated either using Euler approach or DELSSOME approach. The parameters with 
the lowest loss are used to update the sampling distribution. (B) CMA-ES evaluation (Euler). 
For input local circuit parameters and structural connectivity (SC), Euler forward simulation 
applied to pFIC model is used to generate simulated fMRI data. After filtering out simulated 
fMRI data with firing rate outside the range, we compute the corresponding loss with 
empirical functional connectivity (FC), FC Dynamics (FCD) for remaining simulated fMRI 
data. Parallelograms denote input/output, while rectangles denote operations. (C) CMA-ES 
evaluation (DELSSOME). Input local circuit parameters and structural connectivity, the 
DELSSOME out-of-range classifier first filters out local circuit parameters that would 
generate simulated fMRI data with firing rate that are outside the firing rate range. The 



DELSSOME loss predictor then predicts the loss regarding the remaining local circuit 
parameters with empirical FC and FCD directly from parameters without solving the ODEs. 

In our study, we utilized HCP dataset to generate the training, validation, and test set 

for DELSSOME out-of-range classifier and DELSSOME loss predictor (Figure 2). 

 

 
Figure 2. Deep learning data generation for out-of-range firng rate classification as well 
as empirical-fMRI and simulated-fMRI discrepancy prediction. HCP dataset is used for 
deep learning models training, validation and test processes. We group participants and use 
Euler CMA-ES to generate FIC Euler loss prediction training, validation and test set 
respectively. 

 

We partitioned the dataset, comprising 1029 participants, into three non-overlapping 

sets: a training set with 680 participants, a validation set with 180 participants, and a test set 

with 169 participants. Each set underwent further grouping into numerous subgroups. 

Specifically, structural connectivity (SC), functional connectivity (FC), and functional 

connectivity dynamics (FCD) matrices from 50 participants were grouped together. To 

generate group-level SC, FC, and FCD matrices, we employed bootstrapping techniques, 

resulting in 64 group-level SC, FC and FCD matrices for the training set, 14 for the 

validation set, and 13 for the test set. To implement the bootstrapping technique in our study, 



we employed a sliding-window approach. This approach involved grouping participants by 

sliding a window across the dataset. The process mainly consisted of two steps. Initially, 

participants in the dataset were numbered sequentially. Secondly, to form each group, we 

selected a subset of participants by sliding a window across the dataset. For example, the first 

group comprised participants numbered 1 to 50, the second group comprised participants 

numbered 10 to 60, and so forth. Essentially, we moved the window by a fixed increment 

(e.g., 10 participants) to create overlapping subsets of participants. 

Subsequently, utilizing these grouped matrices, we employed traditional CMA-ES 

with Euler evaluation procedures to generate local circuit parameters. During this process, 

two key factors were recorded for each group: firstly, whether the local circuit parameters 

yielded fMRI data within the specified firing rate range, and secondly, the corresponding 

values of the three loss terms (1-r, d, KS) if the simulated firing rates were within the 

specified range. 

For each group in the training/validation/test set, we generated 10,000 sets of local 

circuit parameters along with their associated records. Consequently, we obtained a total of 

640,000 local circuit parameter sets with corresponding records in the training set, 140,000 in 

the validation set, and 130,000 in the test set. These local circuit parameters, together with 

their corresponding records and group-level SC, FC, and FCD matrices, constituted the 

training, validation, and test sets for FIC Euler loss prediction, respectively. 

 

2.5 Deep learning models architecture 

Our deep learning models consisted of two components: a DELSSOME out-of-range 

classifier and a DELSSOME loss predictor. The DELSSOME out-of-range classifier could 

identify and filter out parameter sets likely to generate simulated fMRI data outside of a 

predefined firing rate range. The DELSSOME loss predictor could output loss metrics for 

updating CMA-ES iteration parameters. 

The architecture of DELSSOME out-of-range classifier is shown in Figure 3A. The 

model inputs were the local circuit parameter and the structural connectivity (SC) matrix. 

Utilizing a multilayer perceptron (MLP) module, the local circuit parameter underwent 

transformation into a parameter embedding, while another MLP module processed the SC 

matrix to generate a corresponding SC embedding. These embeddings served as surrogate 

statistics encapsulating the essential information from the local circuit parameter and SC 

matrix. By combining these embeddings and passing them through an additional MLP layer, 

the model “read out” the surrogate statistics, ultimately outputting the probability that the 



given pair of local circuit parameter and SC will yield fMRI data outside our predefined 

firing rate range. During application, if this probability exceeded 50%, the respective local 

circuit parameter would be filtered out. 

The architecture of the DELSSOME loss predictor (Figure 3B) was designed to 

accommodate the prediction of three loss terms, necessitating the inclusion of empirical 

functional connectivity (FC) and functional connectivity dynamics (FCD) data. Similar to the 

DELSSOME out-of-range classifier, this model incorporated MLPs to generate embeddings 

for the local circuit parameter and SC. Additionally, MLP modules were employed to 

produce FC and FCD embeddings from empirical FC and FCD data, respectively. For 

generating surrogate statistics related to loss terms 1-r and d, the embeddings of the local 

circuit parameter, SC, and empirical FC were combined and passed through a MLP layer to 

output these terms. Similarly, surrogate statistics for loss term KS were generated by 

combining the embeddings of the local circuit parameter, SC, and empirical FCD, followed 

by passing through a MLP to estimate the KS loss. 



 
Figure 3. DELSSOME Model architectures. (A) Model overview of the DELSSOME out-
of-range classifier. The inputs to this model are local circuit parameters and structural 
connectivity. We add these embeddings to predict the probability (P) of the parameter to 



simulate fMRI data within firing rate constraint. (B) Model overview of the DELSSOME loss 
predictor. The inputs to this model are local circuit parameters, structural connectivity, static 
and dynamic functional connectivity. We add these embeddings to predict the disagreement 
between empirical and simulated fMRI data. We quantify the agreement between empirical 
and simulated FC using Pearson correlation (r) and absolute difference between the means 
(d), as well as empirical and simulated FCD using KS statistics (KS). Note that FCD input is 
the cumulative sum of the distribution of FCD entries (FCD-CDF). 

 

2.6 Benchmarking 

In order to validate the trained DELSSOME out-of-range classifier and DELSSOME 

loss predictor, we compared the performance and computational efficiency in the context of 

parameter optimization from two distinct methods: 

 Euler CMA-ES: This method involved 100 iterations of the CMA-ES, utilizing 

the Euler evaluation procedure as illustrated in Figure 1B. 

 DELSSOME CMA-ES: Similarly, this method employed 100 iterations of 

CMA-ES, but instead utilized the evaluation procedure outlined in Figure 1C, 

incorporating the trained DELSSOME out-of-range classifier and DELSSOME 

loss predictor. 

These methods were applied to the FIC Euler loss prediction test set participants (N = 

169) for comparative analysis (Figure 4). To facilitate evaluation, the test set participants 

were further divided into three subsets, which we termed FIC inversion 

training/validation/test sets. We generated the group-level SC, FC, and FCD for each set. 

Euler/DELSSOME CMA-ES were applied to the training set to optimize local circuit 

parameters. For each algorithm, we employed 50 different initializations for a more robust 

comparison. 

In the validation phase, the local circuit parameter with the lowest training loss in 

each training iteration was selected and fed into the FIC inversion validation set. This process 

yielded a total of 100 candidate local circuit parameters for validation and Euler simulation 

was used to generate simulated BOLD time series for each of these local circuit parameters. 

The parameter with the minimum validation loss was utilized in the test set for the 

assessment of test loss. 

Through this comparative analysis, we aimed to elucidate the relative performance 

and efficiency of the Euler and DELSSOME CMA-ES methods in the context of parameter 

optimization. 

 

 



 
Figure 4. HCP Feedback Inhibition Control (FIC) model parameter estimation 
workflow. We split the HCP FIC Euler loss prediction test set participants into the FIC 
inversion training, validation, test set. We used two different methods (i.e., Euler CMA-ES, 
DELSSOME CMA-ES) to train local circuit parameters. 
 

2.7 PNC replication and analysis 

To validate the ability of the DELSSOME models to capture neuroscientific 

information, we utilized the PNC dataset, aiming to replicate our previous findings regarding 

the development of the excitatory/inhibitory (E/I) ratio and its association with cognitive 

processes via Euler CMA-ES (Larsen et al., 2022; S. Zhang et al., 2024). 

The data used were the same as those in our previous paper (S. Zhang et al., 2024). 

Following data preprocessing and quality control, our sample consisted of 885 participants 

aged 8-23 years old. To replicate previous E/I ratio development findings, participants were 

stratified into 29 age groups, each comprising approximately 30-31 participants. Within each 

age group, 15 participants were randomly allocated to the validation set, while the remaining 

participants were assigned to the training set. The SC matrix used was grouped from HCP 

FIC Euler loss prediction training set and remained the same for each group. 

For each age group, we employed the DELSSOME or Euler CMA-ES, comprising 

100 iterations of DELSSOME or 50 iterations of Euler evaluation procedure to optimize 

model parameters. Subsequently, 500 (250 for Euler CMA-ES) candidate parameter sets were 

generated from the training set and evaluated in the validation set. The parameter set 

exhibiting the lowest validation cost was utilized to estimate regional E/I ratios across the 

cortex. 



Regarding cognitive processes, participants in the PNC dataset completed the Penn 

Computerized Neurocognitive Battery (CNB), yielding an overall accuracy measure as well 

as domain-specific factor scores. Participants were categorized into 14 high-performance and 

14 low-performance groups based on overall accuracy, with each high-performance group 

age-matched to a low-performance group. Each group comprised approximately 31-32 

participants, with 15 participants randomly assigned to the validation set and the remainder to 

the training set. The SC matrix used was grouped from HCP FIC Euler loss prediction 

training set and remained the same for each group. 

For each cognitive performance group, the DELSSOME CMA-ES approach, 

incorporating 100 DELSSOME or 50 Euler iterations, was employed to optimize parameters. 

Subsequently, 500 (250 for Euler) candidate parameter sets were generated from the training 

set, and the top-performing set from the validation set was utilized to estimate the E/I ratio. 

Finally, we compared the E/I ratios between the high- and low-performance groups to assess 

their association with cognitive functioning. 

Through this comprehensive analysis, we aimed to validate the DELSSOME models' 

capacity to capture neuroscientific phenomena and their potential utility in elucidating the 

relationship between neural dynamics and cognitive processes. 

  



3 Results 
3.1 Deep learning models capture surrogate statistics for parameter optimization 

To speed up the parameter optimization process, particularly to circumvent the 

computational burden associated with Euler forward simulation in large-scale biophysically 

plausible models, we explored the utilization of deep learning neural networks to learn 

compressed representations of essential components: local circuit parameters, structural 

connectivity (SC), static functional connectivity (FC), and functional connectivity dynamics 

(FCD). These compressed representations, termed surrogate statistics, served as proxies for 

the original matrices and could be leveraged to infer the loss terms required for CMA-ES 

iterations. 

The necessity for these matrices arised from the architecture of our large-scale 

biophysically plausible model. In this model, local circuit parameters and SC matrices were 

used to generate fMRI data. FC and FCD were used to measure the similarity between 

simulated and empirical fMRI data. While FC matrices could capture intrinsic information 

embedded within fMRI data, they inherently lacked the capacity to capture temporal features. 

To address this limitation, we utilized FCD matrices, which encapsulated the correlations 

between numerous sliding window FC matrices over time. By incorporating both FC and 

FCD matrices, we could effectively capture both spatial and temporal aspects of fMRI data, 

enabling a more comprehensive assessment of similarity between simulated and empirical 

fMRI data. 

Two different deep learning models, implemented with Pytorch (Paszke et al., 2019), 

were used in our work. The DELSSOME out-of-range classifier was designed to capture the 

surrogate statistics from structural connectivity (SC) and local circuit parameters, to predict 

the firing rate information, in order to filter out those parameters that were likely to generate 

fMRI data with firing rate outside a predefined range. In other words, it assessed the 

likelihood that a given pair of local circuit parameters and SC will yield fMRI data within a 

predefined firing rate range. In our neural mass model the firing rate range aligned with 

experimental observations of excitatory neurons (2.7 ~ 3.3Hz) (De Kock & Sakmann, 2008). 

Meanwhile, the DELSSOME loss predictor integrated the information of SC, local circuit 

parameters, and empirical static functional connectivity (FC) and FC dynamics (FCD), to 

directly generate the loss between simulated and empirical matrices bypassing the process of 

solving the system ODE, thus speeding up the parameter optimization process. 



Specifically, as shown in the previous study, evaluation of simulated fMRI data 

depended on the agreement between the empirical and simulated static functional 

connectivity (FC) and FC dynamics (FCD). We quantified the agreement between empirical 

and simulated FC using Pearson's correlation (r) and absolute difference between the means 

(d), as well as empirical and simulated FCD using KS statistics (KS). The DELSSOME loss 

predictor outputed three loss metrics (1-r, d, KS) between simulated and empirical FC and 

FCD, incorporating local circuit parameters, SC, and empirical data.  

In our experiments, HCP participants were divided into three sets, FIC Euler loss 

prediction training/validation/test set. Within each set we grouped the SC, FC, FCD data of 

50 participants together, and employed bootstrapping techniques to generate multiple groups. 

Spcifically, 64 groups for training, 14 groups for validation and 13 groups for testing. The 

Desikan–Killiany anatomical parcellation (Desikan et al., 2006) with 68 cortical regions of 

interest (ROIs) was used to generate SC, FC and FCD matrices. Traditional parameter 

optimization approach (Euler CMA-ES) was employed to generate 10000 local circuit 

parameters for each group. 

In the test set, the DELSSOME out-of-range classifier achieved an accuracy of 

90.12%, largely above chance (60.88% of the parameters are inside range). This meant the 

compressed representation of local circuit parameters and SC contains enough information 

about firing rate, indicating its ability to capture surrogate statistics relevant to firing rates in 

the neural mass model. 

The test results shown by DELSSOME loss predictor demonstrated close agreement 

with ground-truth loss values (Figure 5A-5C, r>0.9), indicating its efficacy in capturing 

surrogate statistics not only from local circuit parameters but also from empirical FC and 

FCD data. We obtained similar results utilizing a 100-region homotopic parcellation (Figure 

S1) (Yan et al., 2023). These findings highlighted the potential of deep learning integration to 

streamline parameter estimation processes in biophysically realistic large scale models, 

facilitating more efficient and accurate investigations into brain dynamics. 



 
Figure 5. Model validation of DELSSOME loss predictor. (A)-(C) The plots show the 
model performance on one example test set. The horizontal axis shows the predicted loss, 
while the vertical axis shows the ground-truth loss. The correlation between the predicted and 
ground-truth loss are all above 0.9. 
 
3.2 DELSSOME CMA-ES can generate comparable fMRI data while being 500,000% 

faster 

To validate the real application of DELSSOME models in the context of parameter 

optimization, we split the FIC Euler loss prediction test set participants into three subsets, 

FIC inversion training/validation/test set, in order to compare the parameter optimization 

results of Euler CMA-ES and DELSSOME CMA-ES. 

Following the training of the DELSSOME out-of-range classifier and loss predictor, a 

straightforward application of these models was to bypass Euler forward simulation in each 

iteration of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (N. Hansen, 2006), 

which could result in a remarkable speed up of parameter optimization procedure. In our 

experiments, Euler CMA-ES consisted of 100 iterations of forward simulation via Euler 

integration (Figure 1B), while DELSSOME CMA-ES was comprised of 100 iterations of 

DELSSOME evaluation process (Figure 1C). 

Results indicated that using DELSSOME CMA-ES for optimization could offer a 

significant speed-up (Figure 6A, 500,000% speed-up) compared to Euler CMA-ES. 

Moreover, the optimized parameters by DELSSOME CMA-ES even numerically 

outperforms those by Euler CMA-ES using 50 different random initializations each (Figure 

6B). The different initializations are used to demonstrate the robustness of DELSSOME 

CMA-ES. Similar results were shown by uing the 100-region homotopic parcellation (Figure 

S2).  

To further dig into the optimization procedure of DELSSOME CMA-ES, we utilized 

Euler integration to check the loss of parameters optimized for each iteration of DELSSOME 

CMA-ES in the validation set. The total validation loss generated using the Euler integration 



showed a clear trend of decline (Pearson r = -0.57, average across 50 initializations), 

indicating a clear optimization trend of parameters. An example figure was shown (Figure 

S5). 

 

 
Figure 6. Two CMA-ES procedure comparison. (A) Time taken during model training. 
The bar plot shows the normalized log scale computational time taken during training for 
each approach. DELSSOME CMA-ES offers a 500,000% speed-up compared to traditional 
Euler CMA-ES. (B) Total Test Loss comparison. These boxplots contain 50 points each. 
Each point corresponds to the parameter set with the lowest total validation loss of 50 
different random initializations. DELSSOME CMA-ES even outperforms Euler CMA-ES 
numerically. (C) Detailed breakdown of the total loss. The three losses all show comparable 
results that is similar to the pattern shown in total loss. 
 



3.3 DELSSOME CMA-ES replicates previous findings of E/I ratio changes related to 

development and cognition 

To validate the effectiveness of the DELSSOME CMA-ES approach in retaining 

neuroscientific information in the parameter optimization process, we tried replicating our 

prior investigations on the dynamics of the excitation/inhibition (E/I) ratio (Larsen et al., 

2022; S. Zhang et al., 2024) using data from the Philadelphia Neurodevelopment Cohort 

(PNC) dataset (Satterthwaite et al., 2014; Calkins et al., 2015). The DELSSOME models 

were not retrained using the PNC dataset; instead, they remained identical to those employed 

in the HCP dataset to show their generalizability. 

Initially, we hoped to confirm the previously observed decline in E/I ratio during 

developmental stages (S. Zhang et al., 2024) could be replicated by DELSSOME CMA-ES. 

In this experiment, we used the same setup as the previous work (S. Zhang et al., 2024). The 

cohort in PNC, comprising 885 participants, was stratified into 29 age groups and evenly split 

into training and validation sets for each group. We optimized local circuit parameters 

employing the DELSSOME CMA-ES which consisted of 100 DELSSOME evaluation 

iterations. Subsequently, 500 candidate parameter sets were generated and evaluated, with the 

parameter set exhibiting the lowest validation cost utilized to estimate regional E/I ratios 

across the cortex. 

Consistent with our previous work, we observed a consistent decline in mean cortical 

E/I ratio throughout childhood and adolescence (Figure 7A, r = -0.700, p = 2.5 x 10-5), a 

trend observed across all cortical regions with statistical significance (FDR q < 0.05), 

compared to the results from Euler CMA-ES (Figure 7B). Furthermore, this reduction in E/I 

ratio demonstrated a spatial gradient, with sensory-motor regions exhibiting a more 

pronounced rate of decrease (i.e., a more negative age slope) compared to association 

networks (Figure 7C, 7D). The 100-region homotopic parcellation was also utilized and 

similar patterns were observed (Figure S3). 

For cognitive analysis, same as our previous work (S. Zhang et al., 2024), we 

employed an established metric of overall accuracy and divided participants into 14 high-

performance and 14 low-performance groups. Each high-performance group was age-

matched to a corresponding low-performance group (Figure 8A, 8B). We utilized the same 

DELSSOME CMA-ES methodology as in the developmental analysis. Subsequently, E/I 

ratios were estimated and compared between high- and low-performance groups. 

DELSSOME CMA-ES successfully replicated the previous finding that the high-

performance group exhibited significantly lower mean cortical E/I ratio compared to the low-



performance group (Figure 8C, p = 5.1x 10-3). Additionally, E/I ratio differences between 

low- and high-performance groups were more pronounced in transmodal regions compared to 

sensory-motor regions (Figure 8E, all FDR q < 0.05), which was consistent with our 

previous work (Figure 8D, 8F). We also applied the 100-region homotopic parcellation and 

showed similar results (Figure S4). 

 

 
Figure 7. DELSSOME CMA-ES replicates E/I ratio decline during development. (A) 
(B) Mean cortical E/I ratio estimated by DELSSOME CMA-ES shows consistent decline as 
Euler CMA-ES. Participants in older age groups exhibited lower E/I ratio. 29 dots in the 
scatter plots corresponds to 29 age groups. The shaded area depicts 95% confidence interval 
of the linear relationship. (C) (D) Spatial distribution of linear regression slope between 
regional E/I ratio and age from DELSSOME CMA-ES are consistent with that from Euler 
CMA-ES. The values represent the rate of E/I ratio changes during development. All slopes 
are negative and significant (FDR q < 0.05). 

 



These results underscore the robustness of the DELSSOME  CMA-ES approach in 

replicating previous findings related to E/I ratio dynamics during development and cognitive 

processes, providing further validation of its utility in neuroscientific investigations. 

 

 

 
Figure 8. DELSSOME CMA-ES replicates the effect size of E/I ratio differences 
between high and low cognitive groups. (A) Boxplots of age, (B) ‘overall accuracy’ and 
(C) (D) mean cortical E/I ratio of high-performance and low-performance (overall accuracy) 
groups estimated by DELSSOME CMA-ES and Euler CMA-ES respectively. The mean 
cortical E/I ratio of the high-performance group was significantly lower than that of the low-
performance group (FDR q < 0.05). (E) (F) Spatial distribution of effect size of regional E/I 
ratio difference between high-performance and low-performance groups estimated by 
DELSSOME CMA-ES and Euler CMA-ES respectively. All effect sizes were significant 
after FDR correction with q < 0.05. 
 

  



4 Discussion 
In this work, we proposed DELSSOME (DEep Learning for Surrogate Statistics 

Optimization in MEan field modeling), which showcased the feasibility of employing deep 

learning models to capture surrogate statistics for parameter optimization in large-scale 

biophysical circuit models. For the currently used large-scale biophysical model, our 

DELSSOME models consisted of two components: the DELSSOME out-of-range classifier 

and the DELSSOME loss predictor. By taking in local circuit parameters and structural 

connectivity (SC), the DELSSOME out-of-range classifier could accurately filter local circuit 

parameters likely to produce fMRI data beyond predefined ranges. The DELSSOME loss 

predictor directly computed the disagreement between simulated and empirical functional 

connectivity (FC) and the histogram of FC dynamics (FCD), without generating simulated 

fMRI data. Our results demonstrated strong alignment between predicted and ground truth 

loss values generated by Euler integration, affirming the effectiveness of the DELSSOME 

models. Further, the DELSSOME models were proved to successfully speed up the 

parameter optimization process. Integration of the DELSSOME models into the CMA-ES 

workflow allowed us to skip the step of simulating fMRI data, achieving a remarkable 

500,000% speedup without compromising accuracy with the HCP dataset. Moreover, by 

applying the DELSSOME models to the PNC dataset, we confirmed their ability to retain 

biological information, as evidenced by the consistent findings with prior work regarding the 

Excitation/Inhibition (E/I) ratio and its association with cognitive ability (S. Zhang et al., 

2024). 

The embeddings generated by the multiple layer perceptrons (MLPs) in our neural 

network models served as surrogate statistics for predicting simulated fMRI data and 

assessing agreement between simulated and empirical fMRI data. These embeddings 

encapsulated abstract high-dimensional information from local circuit parameters, SC, FC, 

and FCD. Specifically, the surrogate statistics derived from local circuit parameters and SC 

encoded not only their features but also information regarding the differential equations in 

our large-scale biophysical model. Utilizing the embeddings, the DELSSOME out-of-range 

classifier extracted firing rate information, while the DELSSOME loss predictor inferred FC 

and the histogram of FCD in simulated fMRI data. By integrating these embeddings with 

those derived from empirical FC and FCD, the DELSSOME loss predictor could compute the 

loss terms pertaining to simulated FC and FCD compared to empirical counterparts. 



The use of embeddings for local circuit parameters, SC, empirical FC, and the 

histogram of FCD were all critical in our approach, aligning with the requirements of the 

large-scale biophysical model and the evaluation process involving CMA-ES. In the large-

scale biophysical model, local circuit parameters and SC matrices were essential for 

simulating fMRI data accurately. After generating simulated fMRI data, in the CMA-ES 

evaluation process, empirical FC and FCD embeddings were indispensable for assessing the 

agreement between simulated and empirical fMRI data. In our study, we employed a high-

dimensional hidden space to align and integrate the embeddings of local circuit parameters, 

SC, FC, and the histogram of FCD. This alignment and integration within the same high-

dimensional space were crucial for ensuring compatibility and facilitating meaningful 

analysis across different aspects of the biophysical model. The capability to align these 

embeddings within the same space was made possible by the inherent properties of the 

embedding space itself (He et al., 2022; Assran et al., 2023; Xiong et al., 2024). This concept 

paralleled previous methodologies like CLIP (Contrastive Language-Image Pre-training) 

(Radford et al., 2021), which employed a high-dimensional hidden space to align image and 

natural language embeddings. By leveraging a shared embedding space, we enabled direct 

comparison and integration of information across diverse components of the biophysical 

model. It is important to note that integrating information directly in the original space rather 

than in the embedding space would present significant drawbacks. Without the alignment 

provided by the shared embedding space, the different components would not be directly 

comparable and integration would be inherently complex and error-prone. Thus, the use of 

the high-dimensional hidden space facilitated integration and analysis of information across 

various components of the biophysical model, enhancing the interpretability and utility of the 

deep learning models. To implement this integration of embeddings from different matrices, 

we chose the addition operation rather than concatenation, a strategy akin to integrating 

positional encoding and word encoding in Transformer models (Vaswani et al., 2017; Devlin 

et al., 2019). Our approach underscored the versatility and effectiveness of leveraging 

embeddings to represent complex relationships and features, aligning with the broader trend 

in machine learning methodologies. 

The mechanism behind the fast performance of DELSSOME CMA-ES lied in the 

usage of deep neural networks. The SC, FC, and FCD matrices for each pair of parameters 

could be transformed into the aforementioned embeddings. These embeddings were then 

decoded to directly output the loss terms (1-r, d, KS). Unlike traditional methods that relied 

on Euler simulations to generate time series and then calculated the loss terms, the 



DELSSOME model replaced the time-consuming Euler simulation with a deep learning 

model forward pass, which took approximately 0.15 seconds compared to 750 seconds for 

Euler simulation when using 68 Desikan–Killiany regions of interest (ROIs). This significant 

reduction in computation time was the reason why DELSSOME CMA-ES greatly accelerated 

the optimization process for biophysical model local circuit parameters. It may seem 

counterintuitive that DELSSOME CMA-ES could achieve results comparable to or even 

numerically better than Euler CMA-ES. As shown in Figure 5, the scatter plot indicated that 

the DELSSOME predictor did not perfectly predict loss terms and exhibited significant 

deviations from the ground truth losses obtained by Euler simulation for some points. This 

discrepancy might be attributed to noise or possible degeneracy in each Euler simulation. 

Degeneracy is common in many optimization problems and biological systems (Dembo & 

Klincewicz, 1985; Edelman & Gally, 2001; J. Zhang et al., 2016). It occurs when two 

different sets of parameters yield the same loss, representing two local minima. However, 

these parameter sets often have distinct biophysical meanings. Nonetheless, during the 

DELSSOME CMA-ES optimization process, the predictor effectively captured the trend of 

optimizing parameters. This effect was seen in the validation processes of the parameter 

estimation workflow, where local circuit parameters generated by DELSSOME CMA-ES 

were input to the biophysical model for validation, and the validation losses showed a clear 

trend of decline (Figure S5). We hypothesized that DELSSOME CMA-ES generated a 

"clean" set of parameters, which was further reflected in the more pronounced trend exhibited 

by DELSSOME CMA-ES in the E/I ratio age effect in the PNC dataset experiments. 

Despite the strong performance of DELSSOME models in FIC Euler loss prediction, 

our parcellation resolution is limited. In our study, we only utilized Desikan-Killiany 68-ROI 

and Yan 100-ROI homotopic parcellations (Yan et al., 2023). The bottleneck in our 

methodology was the dataset generation procedure, where the time required greatly scaled 

with the resolution. 

Future work will focus on developing individual-level DELSSOME models. 

Currently, we have only performed group-level FIC Euler loss predictions. Individual-level 

predictions could reveal nuanced biophysical information, representing an important area in 

future research. 

In summary, our work addressed key challenges in large-scale biophysical modeling 

by significantly accelerating model inversion, thus expediting computational research and 

facilitating more time-consuming analyses such as permutation tests. Additionally, the 



embeddings in our models held promise for capturing novel biophysical patterns and 

assessing the regional impact of biophysical parameters and matrices. 
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5 Appendix 
5.1 Parametric feedback inhibition control (pFIC) model 

The feedback inhibition control (FIC) model (Deco et al., 2014) was derived from the 

mean field reduction of spiking neuronal network models (Brunel & Wang, 2001; Wong & 

Wang, 2006). The detailed derivation of the FIC model can be found in a previous study 

(Deco et al., 2014). The differential equations describing neuronal activities of the 𝑗𝑗-th 

cortical region are shown below: 
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where 𝑆𝑆, 𝑟𝑟, and 𝐼𝐼 denote synaptic gating variables, firing rate, and synaptic currents 

respectively. The superscripts 𝐸𝐸 and 𝐼𝐼 represent the excitatory and inhibitory neuronal 

populations respectively. 

The local circuit parameters, including 𝑤𝑤𝐸𝐸𝐸𝐸 (excitatory-to-excitatory recurrent 

connection strength), 𝑤𝑤𝐸𝐸𝐸𝐸 (excitatory-to-inhibitory connection strength), 𝜎𝜎 (noise amplitude) 

and 𝐺𝐺 (global SC scaling constant) are unspecified and will be inferred by fitting to empirical 

fMRI data. 

Building upon our prior research (S. Zhang et al., 2024), equations 1 to 6 were used to 

simulate the time courses of excitatory and inhibitory synaptic gating variables (𝑆𝑆𝑗𝑗
(𝐸𝐸)

 and 𝑆𝑆𝑗𝑗
(𝐸𝐸)) 

of each ROI with a fixed local circuit parameter set. The regional E/I ratio was defined as the 

average temporal ratio between 𝑆𝑆𝑗𝑗
(𝐸𝐸)  and 𝑆𝑆𝑗𝑗

(𝐸𝐸). The mean cortical E/I ratio was then derived 

from averaging regional E/I ratios across all cortical ROIs. Additionally, the simulated 

excitatory synaptic gating variables (𝑆𝑆𝑗𝑗
(𝐸𝐸)) were inputted into the Balloon-Windkessel 

hemodynamic model to generate fMRI BOLD signals (Stephan et al., 2007; Deco et al., 

2014). The simulated fMRI BOLD signals were utilized to generate simulated static FC and 

FCD. 
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