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Abstract 
 

Cardiovascular disease (CVD) is a primary cause of mortality globally, and the 

electrocardiogram (ECG) is a commonly used diagnostic tool for its detection. While Artificial 

Intelligence (AI) has shown an exceptional predictive ability for CVD, the lack of interpretability 

has deterred medical professionals from its use. To address this, we developed an explainable AI 

(XAI) framework that integrates ECG rules expressed in the form of first-order logic (FOL). The 

framework can uncover the underlying model's impressions of interpretable ECG features, which 

can be crucial for cardiologists to understand the diagnosis predictions generated by our system. 

Our experiments demonstrate the benefits of incorporating ECG rules into ECG AI such as 

improved performance and the ability to generate a diagnosis report that provides insights into 

how the model derived the predicted diagnoses. Overall, our XAI framework represents a great 

step forward in integrating domain knowledge into ECG AI models and enhancing their 

interpretability.  
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1. Introduction 
Cardiovascular disease (CVD) is one of the leading causes of death worldwide, particularly in 

developing countries (Timmis et al., 2020). In 2019, World Health Organization (WHO) reported 

that around 17.9 million people died from CVDs, accounting for 32% of deaths globally (WHO, 

n.d.). Electrocardiogram (ECG) is a widely used, low-cost, and non-invasive medical test for 

diagnosing various CVDs in clinical practice (Surawicz & Knilans, 2008). In the United States, 

ECGs are ordered in approximately 5% of office visits (Strodthoff et al., 2020), indicating their 

essential role in diagnosing CVDs. 

Before the era of Artificial Intelligence (AI), particularly Machine Learning (ML), ECG 

diagnosis is mostly treated as a pattern recognition problem (Hegadi, 2014). This is also the case 

for cardiologists and the ECG’s effectiveness heavily relies on the experts’ interpretation and 

experience in detecting ECG patterns (Siontis et al., 2021). Compared to humans, AI is 

particularly good at exploiting hidden subtle patterns in ECG, and recent ECG AIs have shown 

exceptional performance in predicting CVD (Somani et al., 2021). Despite being a promising 

technology, the adoption of ECG AI in hospitals is still limited mainly due to its lack of 

explainability. To elaborate, in spite of the extraordinary performance, virtually all current ECG 

AI offers little explanation of why the ECG AI makes certain decisions (Somani et al., 2021). 

The black-box nature of these ECG AI makes doctors reluctant to bare the risk of wrong AI 

diagnosis due to liability concerns (Teodoridis, 2022). 

To alleviate cardiologists’ concerns when using AI-aided ECG systems, we can follow their 

thought process and go through a systematic process called differential diagnosis1 (DDx). During 

the DDx process, doctors eliminate candidate diseases one by one, following a set of defined 

ECG rules while considering the patient’s demographics, symptoms, and medical test results. 

However, ECG rules (Khan, 2008) are known to be complex, and are often challenging for 

cardiologists to grasp, let alone general practitioners or doctors in the emergency room who need 

to urgently interpret the ECG. 

Therefore, we aim to create an explainable ECG AI that can efficiently incorporate a wide range 

of ECG rules to make accurate diagnosis predictions. To achieve this, we have created an 

 
1 The term “differential diagnosis” may also refer to the remaining diagnoses after the process of elimination. 
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explainable AI (XAI) framework to integrate ECG rules that can be expressed in first-order logic 

(FOL). For an input ECG, our ECG-XAI framework will process it and internally capture the 

ML model’s perceptions of the ECG’s explainable features, which are comprehensible to 

cardiologists. This enables the system to generate a diagnosis report that not only predicts the 

diagnosis but also explains how diagnoses were derived, increasing transparency and 

trustworthiness. 
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2. Basic concepts of ECG 
To facilitate the discussion, this section will briefly introduce the basic concepts of ECG. To start 

with, the depolarization and repolarization of myocardial cells result in the contraction and 

relaxation of cardiac muscles, respectively (Surawicz & Knilans, 2008). Such processes will 

generate electrical impulses, which can be detected by ECG using electrodes placed on specific 

locations of a patient’s skin (Meek & Morris, 2002). Each ECG is presented as a graph of 

voltage versus time, describing the electrical activities of cardiac cycles (Lilly, 2012). An ECG 

that deviates from the normal ECG pattern may indicate various CVDs described in the last part 

of this section. 

2.1 Electrodes placement and leads 

During an ECG test, 10 adhesive pads called electrodes are attached to the skin: 4 placed on 

limbs (RA, LA, RL, LL2) and 6 placed on the chest (V1-V6) as shown in Figure 1. A lead is the 

electrical potential difference between a pair of electrodes. The 12 leads of a normal ECG can be 

broken down into 3 categories: 3 bipolar limb leads I, II, and III; 3 augmented limb leads aVF, 

aVL, and aVR; and 6 precordial/chest leads (V1-V6). Each of the 3 bipolar limb leads has actual 

limb electrodes as its negative and positive electrodes (e.g., I = LA - RA). Whereas the 

augmented limb leads and chest leads are unipolar leads, whose negative electrode is a virtual 

electrode (Vw) calculated by averaging the electrical potential of LA, RA, and LL (Lilly, 2012). 

Table 1 summarizes how different leads are derived. 

 

 
2 RA = Right Arm, LA = Left Arm, RL = Right Leg, LL = Left Leg 

Figure 1 Placement of electrodes (Lilly, 2012) 
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Lead (-) Electrode (+) Electrode 

I RA LA 

II RA LL 

III LA LL 

aVR Vw RA 

aVF Vw LL 

aVL Vw LA 

V1 Vw V1 

V2 Vw V2 

V3 Vw V3 

V4 Vw V4 

V5 Vw V5 

V6 Vw V6 

           Table 1 Summary of the 12 leads 

Moreover, the deflection of each lead has the following implications: the depolarization of the 

heart toward (resp. away) the positive electrode yields a positive (resp. negative) deflection; the 

repolarization of the heart toward (resp. away) the positive electrode yields a negative (resp. 

positive) deflection (Schrepel et al., 2021). 

Furthermore, the 12-leads system gives a three-dimensional view of the heart which is critical for 

examinations of the heart’s structural abnormalities. Specifically, the 6 limb leads describe the 

Figure 2 Illustration of limb leads (Lilly, 2012) 

Figure 3 Leads give both vertical and horizontal 

views of the heart (Meek & Morris, 2002) 
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vertical plane, and the 6 chest leads describe the horizontal plane as shown in Figure 3(Meek & 

Morris, 2002). 

2.2 Components of an ECG 

To understand each component of an ECG, one should first learn the electrophysiology related to 

cardiac movements. Each cardiac cycle begins with atrial depolarization3, initiated by the 

sinoatrial (SA) node located at the right atrium as shown in Figure 4. The electrical impulses 

generated by atrial depolarization then spread throughout the atria, travel through the 

atrioventricular (AV) node, and finally reach the ventricles via the downstream fascicles of the 

conduction system (Meek & Morris, 2002). Hence, there is a delay between atrial depolarization 

and ventricular depolarization. After depolarization, the atria and ventricles go through the 

process of repolarization4, which similarly begins at the atria and ends at the ventricles. 

Therefore, each cardiac cycle comprises two phases, one for heart contraction (systole phase), 

and another one for heart relaxation (diastole phase) (Lilly, 2012). 

With the knowledge introduced above, one may understand why an ECG is decomposed in the 

following way (Parsi, 2021): the P wave, which represents atrial depolarization; the QRS 

complex, which represents ventricular depolarization; and the T wave, which represents 

ventricular repolarization. The QRS can be further decomposed into Q wave, R wave, and S 

wave, though the Q wave and the S wave may not be present (even in normal ECG). The atrial 

 
3 Atrial depolarization results in the contraction of the atria 
4 Repolarization results in heart relaxation 

Figure 4 Electrical conduction system of 

the heart (Meek & Morris, 2002) 
Figure 5 ECG components (Parsi, 2021) 
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repolarization happens during the QRS complex, although the electrical changes incurred by the 

atrial repolarization are not pronounced compared to the ventricular depolarization (Surawicz & 

Knilans, 2008). Other important ECG segments and intervals are shown in Figure 5. 

2.3 Rate and rhythm 

The first question to ask while interpreting an ECG is whether the heart rate and rhythm are 

normal. The heart rate is defined to be the rate at which the SA node depolarizes as it marks the 

beginning of a cardiac cycle. The normal heart rate for an adult is 60-100 beats per minute 

(bpm). A heart rate falling below 60 bpm is termed bradycardia, while a heart rate greater than 

100 bpm is termed tachycardia (Meek & Morris, 2002). 

The cardiac rhythm in a normal resting heart is called normal sinus rhythm (NSR), which leads 

to the typical P-QRS-T pattern on the ECG as shown in Figure 5. A rhythm that deviates from 

NSR is called an arrhythmia (Surawicz & Knilans, 2008). 

2.4 Cardiac axis 

The cardiac axis or QRS axis is the mean direction of the ventricular depolarization wave in the 

frontal plane (Meek & Morris, 2002). The direction of the lead I is the zero reference point of the 

hexaxial reference system as shown in Figure 6. The normal value for the cardiac axis is -30 

degrees to +90 degrees, which can be determined by whether the QRS complex is mostly 

positive in lead I and II (Meek & Morris, 2002). A cardiac axis that is smaller than -30 degrees 

indicates left axis deviation, while a cardiac axis that is bigger than +90 degrees indicates left 

Figure 6 Hexaxial diagram for cardiac axis (Lilly, 2012) 
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axis deviation (Lilly, 2012). A deviated cardiac axis may indicate enlargement of heart chambers 

(Hypertrophy) or impairment of the heart’s conduction system (Ashley & Niebauer, 2004). 

2.5 ECG diagnosis 

Despite its low cost, ECG can provide insights into a considerable number of CVDs. The CVDs 

related to ECG can be broadly categorized into the following categories: Arrhythmias (ARR), 

Ischemia (ISC) and Myocardial Infarction (MI), Conduction Disturbance (CD), and Hypertrophy 

(HYP). Table 2 describes these categories in detail. 

CVD Description 

Arrhythmias Heart rhythm that deviates from the normal sinus rhythm 

Ischemia and 

Myocardial Infarction 

Myocardial infarction is caused by tissue death (infarction) of the heart muscle (myocardium) 

because of prolonged ischemia, which is the lack of oxygen delivery to the myocardium 

Conduction Disturbance Damage or obstruction (block) in the heart’s electrical conduction system 

Hypertrophy Enlargement of heart chambers 

Table 2 Description of major categories of ECG diagnosis 
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3. Literature Review 
This section will provide an overview of the current state of ECG AI including ML algorithms 

applied to ECG and XAI techniques used in ECG AI. Additionally, it will highlight previous 

efforts to integrate logical rules into neural networks. At the end of this section, we will explore 

publicly available ECG datasets and determine the one that will be used for this project. 

3.1 Machine Learning and ECG 

Numerous studies have explored the potential of using ML in ECG diagnosis. Being a data-

driven modeling technique that excels at learning subtle patterns automatically from the dataset, 

ML shows superb performances in predicting heart diseases using ECG (Siontis et al., 2021). 

Jahmunah et al. (2021) give a summary of the ML models employed in the previous works about 

ECG AI and the most common ML models are Recurrent Neural Networks (RNNs) and 

Convolutional Neural Networks (CNNs). RNN models are by design suitable for sequential data 

such as ECG time series (Tealab, 2018). The most commonly used RNN variant for ECG data is 

LSTM (Jahmunah et al., 2021). As for CNN models, most of them used one-dimensional (1D) 

convolution that exploits temporal relationships for the time series of each ECG lead. However, 

some studies use two-dimensional (2D) convolution on stacked time series of 12 ECG leads, 

with the intent to exploit both temporal and spatial relationships of ECG recordings (Siontis et 

al., 2021). Nevertheless, this approach is questionable as it may yield erroneous relationships 

when convolving two leads that are not spatially adjacent (e.g., leads V1 and III).  

Some papers have developed more advanced ML models on ECG data, usually by extending the 

existing architectures. A great example is combining CNN and RNN, where CNN is used to 

extract sequential features to be fed into RNN (Lih et al., 2020). Another example is the residual 

neural network (ResNet), which adds skip connections to resolve traditional CNN’s vanishing 

gradients problem (Wang et al., 2017). He et al. (2018) extend ResNet further and get xResNet, 

the best-performing model on the PTB-XL dataset with a macro-averaged AUC (Area Under 

Curve) of 0.925 when predicting all types of labels (Strodthoff et al., 2020). 

It is worth noting that despite numerous efforts made to improve prediction accuracy, few studies 

have offered explanations for ECG AI’s predictions (Somani et al., 2021). Even among those 

that did attempt to interpret the AI model, many only used post hoc XAI techniques that provide 



 9 

little useful information from a cardiologist’s perspective, which will be discussed in the 

following section.  

3.2 Explainable AI techniques for ECG AI 

As shown in the Introduction, one major obstacle to ECG AI’s adoption in hospitals is doctors’ 

reluctance to trust predictions from a black-box AI. There have been several attempts to improve 

ECG AI’s explainability using XAI techniques such as the Local Interpretable Model-Agnostic 

Explanations (LIME) (Hughes et al., 2021), Gradient-weighted Class Activation Mapping (Grad-

CAM) (Hicks et al., 2021; Raza et al., 2022; Taniguchi et al., 2021), and Shapley Values 

Additive Explanations (SHAP) (Anand et al., 2022; Zhang et al., 2021). These studies used XAI 

techniques to achieve similar goals of highlighting the parts of the ECG that contribute most to 

the model’s prediction.  

However, these XAI techniques have three limitations. Firstly, although these techniques are 

domain-agnostic and can be applied to any ML model, they may not generate explanations that 

are domain-specific and intuitive for trained cardiologists. For instance, simply highlighting 

abnormal ST segments is not sufficient for diagnosing MI because cardiologists should also 

check whether the ST segment is elevated or depressed as well as other components (namely Q 

wave and T wave) of the ECG. Secondly, ECG patterns that require examining multiple cardiac 

cycles are not well represented through highlighting. For example, the hallmark of atrial 

fibrillation (A-fib)5 is abnormal rhythm with inconsistent patterns across cardiac cycles. In this 

case, the above XAI techniques might highlight most parts of the ECG, which again is not 

insightful. Last but not least, these XAI techniques are post hoc analyses. Therefore, one may 

conclude fallacious relationships between ECG patterns and CVD diagnosis, which might not 

correspond to the electrophysiology behind an ECG test.  

The model that most align with this project’s objectives is proposed by Jo et al. (2021). The 

model aims to predict whether the ECG shows A-fib (binary classification). To improve 

interpretability, the predictor makes use of results from two submodules that detect heart rhythm 

irregularity and the presence of a P wave. Although these two submodules indeed yield 

intermediate ECG characteristics comprehensible to cardiologists, this ECG AI still has areas to 

be improved. To begin with, this model has limited practical value as it only focused on A-fib, 

 
5 A form of arrhythmia 
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while ECG can generate predictions for myriads of CVDs. Additionally, this model’s 

submodules straightforwardly apply ResNets on the whole ECG time series to obtain the 

intermediate characteristics. However, it would make more sense to first delineate the ECG into 

segments (either through traditional pattern recognition methods or through ML methods) and 

focus on only the P wave part. 

3.3 Neural Networks and Logic 

Our attempts to integrate ECG rules, particularly those that can be expressed in FOL, into neural 

networks can be seen as an instance of Neural-Symbolic Learning (Besold et al., 2017). 

One of the widely adopted approaches for combining logic with ML models is through 

modification of the loss functions. This effectively regularizes the network to enforce constraints 

or minimize inconsistencies among predictions (Du et al., 2019; Minervini & Riedel, 2018). 

Taking this a step further, Xu et al. (2018) introduced a novel approach that incorporates general 

logical constraints about the output vectors into the loss functions. There are also some other 

methods that introduce additional structures to facilitate logical reasoning such as the teacher-

student framework proposed by Hu et al. (2020), which can transfer FOL rules into the neural 

networks through iterative distillation. 

Although the abovementioned methods all leverage domain knowledge in some way to produce 

predictions that are more aligned with the logical rules, they often do not prioritize 

explainability. As a result, even when the model's predictions are more logical and sensible, it 

may still be challenging to understand how the model arrived at those predictions. 

One method that can indeed improve explainability is proposed by Li and Srikumar (2019), 

which involves modifying the pre-activated value (MPAV) before the activation function. 

However, it also has some limitations such as not being able to incorporate the comparison 

operators, which are crucial in ECG rules as they involve numerous thresholds and comparisons. 

With that being said, MPAV’s implementation of implication remains valuable, and we will 

adapt it into our framework. 

To address MPAV’s limitation, we developed soft thresholds, which integrate comparison 

operators into our framework in a way that is not binary or brittle. The results from our 

comparison operators are the basic building blocks for “impressions”, a concept we introduced to 
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capture our model’s perceptions of explainable features that are comprehensible to cardiologists. 

These impressions can be further combined using the probabilistic soft logic (Beltagy et al., 

2014) to enhance the explainability. We will provide further details about soft thresholds and soft 

logic in the “Methodology” section. 

3.4 Publicly available ECG datasets 

Below are publicly available 12-lead ECG datasets that may assist this project’s model 

development and validation. We eventually chose the PTB-XL as our dataset considering its 

large record count and comprehensive labeling. 

3.4.1 Shaoxing People's Hospital dataset 

Shaoxing People's Hospital dataset (Zheng et al., 2020) is comprised of 10-second multi-labeled 

ECG records of 10,646 patients, featuring 11 arrhythmia labels and 67 additional labels for other 

disorders. The labels are manually annotated by professional cardiologists. Although this dataset 

did not include patients with other major CVDs diagnosable via ECG (i.e., ISC and MI, CD, 

HYP), this dataset has the most diverse arrhythmia labels, which may help the development of 

this project’s arrhythmia model. 

3.4.2 Shandong Provincial Hospital dataset 

Shandong Provincial Hospital dataset (Liu et al., 2022) is a new dataset that includes 25770 

multi-labeled ECG records (10~60 seconds) with corresponding demographics from 24666 

patients. There are 44 labels covering major categories of ECG diagnosis. Although few patients 

with MI are included in this dataset, the myriad labels of this dataset make it a great validation 

dataset to test the ML model’s generalizability. 

3.4.3 Lobachevsky University Electrocardiography Database 

Lobachevsky University Electrocardiography Database (LUDB) (Kalyakulina et al., 2020) 

consisted of 200 multi-labeled 10-second ECG signal records. It has extensive labels for various 

aspects of ECG such as heart rate and rhythm, cardiac axis, ISC and MI, CD, and HYP. More 

importantly, ECG records in LUDB have been manually delineated/segmented into P wave, QRS 

complex, and T wave by cardiologists. Therefore, despite having few records, LUDB can be 

used to verify the accuracies of ECG delineation tools. 

3.4.4 PTB-XL 

PTB-XL (Wagner et al., 2020) contains 21837 multi-labeled 10-second ECG records gathered 

from 18885 patients. In total, PTB-XL has 71 labels consisting of diagnostic labels describing 
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specific CVDs associated with the ECG, form labels describing ECG’s morphology, and cardiac 

axis labels. Table 3 summarizes the number of records with diagnostic labels that fall under each 

major category, from which one can see that there are sufficient training data for each major 

category. Hence, PTB-XL is chosen as the dataset for this project. 

# Records Major Categories Description 

9517 NORM Normal ECG 

4132 ARR Arrhythmia 

8118 ISC and MI Ischemia and Myocardial Infarction 

4901 CD Conduction Disturbance 

2649 HYP Hypertrophy 

Table 3 Number of records for each major category of ECG diagnosis 

Moreover, Strodthoff et al. (2020) have provided a framework for testing models’ performances 

on PTB-XL. In addition to the framework, they have implemented various state-of-the-art 

(SOTA) ML algorithms on PTB-XL, which may be compared with this project’s model. 
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4. Methodology 

To generate an ECG report with an explanation comprehensible to cardiologists, the ECG-XAI 

system should carry out a DDx process similar to the one that the cardiologists use. The DDx 

process carried out by our system can be broken down into two steps. First, as described in the 

following “Preprocessing” section, the system will extract relevant ECG features such as the 

heart rate. Subsequently, the system will utilize the methods described in the “ML Model 

Augmentation using FOL” section to build architectures (described in the “Architectures” 

section) that incorporate FOL rules related to the ECG DDx process. Finally, the “ECG-XAI 

framework” section will briefly introduce our easy-to-use framework that captures the above 

functionalities in a scalable fashion. 
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4.1 Preprocessing 

4.1.1 ECG Cleaning and Delineation 

The first step of preprocessing is ECG cleaning and delineation. During delineation, an ECG 

record is segmented into P-QRS-T waves. This is a crucial step as downstream tasks and the 

explainability of the DDx results heavily rely on the accuracy of the delineation. 

Makowski et al. (2021) have provided a package called NeuroKit2 for ECG cleaning and 

delineation. ECG records from PTB-XL are used to test the NeuroKit2 package. The first feature 

offered by this package is ECG signal cleaning via removing high-frequency noise, adjusting 

drifted baseline, etc. Figure 8 shows that the package has done a decent job of cleaning the ECG 

signal. Moreover, using wavelet transform, this package can delineate an ECG signal and obtain 

peaks and boundary points of different ECG waves. The algorithm provided by the package 

usually yields satisfactory results for normal ECGs as shown in Figure 9. However, it encounters 

problems when the ECG shows abnormal patterns such as inverted T waves as shown in Figure 

10. 

Figure 7 Lead II of a normal ECG Figure 8 Lead III of a normal ECG 

with baseline drift 

Figure 9 Delineation of Lead II 

of a normal ECG 

Figure 10 Incorrect delineation of Lead 

V5 of an ECG with inverted T waves 
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To correctly identify peaks and boundaries of inverted waves (namely inverted P or inverted T 

waves), we create a custom delineation function to first check whether the wave is inverted based 

on delineation results from the NeuroKit2. There are two criteria for detecting inverted waves. 

The first one is checking whether the voltage at the wave peak is negative and the second one is 

checking whether the voltage at the wave peak is lower than the voltages at the wave onsets and 

offsets. If an inverted wave is detected in a lead, our delineation function will feed the inverted 

ECG lead into NeuroKit2’s delineation algorithm and use the delineation of the inverted lead to 

correct the inverted waves in the original ECG lead.  As shown in Figure 11, our custom 

delineation function successfully corrects the segmentation mistakes made in Figure 10. 

4.1.2 Extracting Objective Features 

After cleaning and delineation of ECG, each lead of an ECG record can be decomposed into 

several cardiac cycles with their respective P-QRS-T waves. Then we may proceed to extract 

objective features for each ECG record. These objective features are either continuous features 

such as heart rate, or binary features such as whether the PR interval is prolonged. The 

“objective” here indicates that the features are computed directly using established ECG rules 

rather than the soft rules introduced in the next section. The reason why we are extracting these 

objective features is that we will compare and align the model’s impressions with these objective 

features to ensure that the model’s impressions make sense and do not deviate too much from the 

normal ECG rules. Additionally, cardiac cycles may output different objective features due to 

factors such as noise or variability between cardiac cycles. For instance, the PR interval in one 

cardiac cycle may be greater than the threshold 200ms, while the next cycle’s PR interval does 

not exceed 200ms. Therefore, the ECG record’s objective features are computed as the averages 

Figure 11 Correct delineation of Lead 

V5 of an ECG with inverted T waves 
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of the objective features across cardiac cycles. If a feature is continuous such as the PR interval, 

then its aggregated feature is the average estimate of the continuous feature. If the feature is 

binary such as “whether the PR is prolonged”, then the aggregated feature reflects the percentage 

of cardiac cycles where the binary feature is true. All objective features used in this project are 

summarized in Appendix A2. 

4.2 ML Model Augmentation using FOL 

As will be shown in the “FOL in ECG DDx Process” section, a considerable number of rules in 

ECG diagnosis can be described using FOL. Hence, it may be beneficial to develop a method to 

inject FOL rules into an ML model to make it more aware of the constraints in the ECG DDx 

process. The following sections will first introduce basic FOL concepts used in this project, 

followed by how to incorporate simple comparison operators and implications into ML models, 

and finally how to incorporate more general FOL rules. 

4.2.1 Basic FOL Concepts 

To formally formulate rules in the ECG diagnosis, we can make use of the concept of formula in 

FOL. In FOL, a formula is a well-formed expression made up of symbols from the FOL 

alphabet/language. Below describes the subset6 of FOL symbols and formulas that will be used 

in this project. 

FOL has two types of symbols. The first type of symbol is the logical symbol, and the main type 

of logical symbol used in this project is logical connectives. The logical connectives employed in 

our ECG-XAI framework include the following: ∧ for conjunction, ∨ for disjunction, → for 

implication, ~ for negation. The second type of symbol is the non-logical symbol, and the main 

type of non-logical symbol included in this project is the predicate. A predicate typically 

describes the relationship between the input variables. In the case of our system, comparison 

operators (a type of predicate) such as greater than (>) and less than (<) are commonly used. 

With the help of symbols, we can then construct formulas inductively using: 

- Propositional variable: a variable itself can be a formula if it is either true or false. 

- Predicate: predicates applied to a set of variables/terms is a formula 

 
6 Other FOL concepts such as Function, Equality, Quantifiers are omitted for simplicity as the current subset of FOL 

is sufficient to describe rules used in ECG diagnosis 
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- Logical Connectives: if φ and ψ are formulas, then the expressions formed by connecting 

them using logical connectives are also formulas. For instance, ~φ, φ → ψ, and φ ∧ ψ are 

also formulas. 

Moreover, a literal is defined to be either a propositional variable, a predicate applied to 

variables, or a negation of them. Furthermore, we can ground a formula by replacing variables in 

the formula with actual values corresponding to those variables. The resulting formula is called 

the ground formula. 

A great number of ECG constraints can be formed using the above building blocks, and the next 

section will discuss how to incorporate formulas into ML models to make use of our prior 

knowledge. 

4.2.2 Incorporate Simple FOL Concepts 

We will first focus on utilizing comparison operators and logical connectives in this section and 

will then use them to build more complex formulas in the “More General FOL Rules” section. 

4.2.2.1 Formula with Comparison Operators 

As discussed in the “preprocessing” section, the extracted objective feature involving threshold 

is usually a binary feature (either 0 or 1). Take tachycardia (TACH) as an example, it is a binary 

feature defined by “TACH = HR > 100”, where HR is the heart rate. However, the implication of 

an HR of 102 is wildly different from an HR of 200. To model this and have richer information 

retained in the TACH feature, we come up with soft thresholds, whose definition is given below. 

Suppose we have a binary feature B = A > ThreshA, where A is a variable and ThreshA is the 

threshold of A. Then the soft version or impression of B using soft threshold can be defined as 

𝐵𝑖𝑚𝑝 = 𝜎 (𝑤(𝐴 − ThreshA(1 +  𝛿))) (1) 

where 𝜎 is the sigmoid function, δ is a real-valued factor to slightly modify the threshold, and w 

is a non-negative value to strengthen or weaken the impression. The resulting impression of B is 

a real number between 0 and 1, which can be further combined using logical connectives in 

probabilistic soft logic as will be shown in the next section.  

The intuition behind modifying the threshold is that in many cases, thresholds used in practice 

may vary across hospitals or even doctors. A great example is the thresholds for detecting LVH, 
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for which multiple standards coexist. In Khan's book alone (2008), there are four standards 

introduced, each with its own strength and weakness. Allowing the threshold to fluctuate around 

the given threshold may overcome the weakness of the given threshold to some extent. That 

being said, the soft threshold should not deviate too much from the given threshold as that will 

render the soft threshold meaningless. Hence, we will add a loss Lossδ = δ2 to the total loss to 

regulate the δ. 

Moreover, we have another parameter w that acts as an amplifier for our impression of feature B. 

However, to avoid cases where w becomes too large or 0, we will add another loss Lossfeat which 

is the cross-entropy between the objective feature B and the feature impression Bimp to the total 

loss to regulate w. 

It is worth mentioning that the amount of regulation can be modified with coefficients (presented 

in the “Experiments” section). And we may not want to overly emphasize on making δ close to 0 

or making feature impressions similar to the objective features, as that will make the ML model 

equivalent to a rule-based system where hard rules are employed. 

4.2.2.2 Formula with Logical Connectives 

Since the truth values of the propositional variables or predicates in our system are real values 

between 0 and 1, the traditional definitions of logical connectives that focus on binary truth 

values will not apply here. Inspired by the probabilistic soft logic used in Li and Srikumar's work 

(2019), we define our logical connectives as follows: 

 ⋀ 𝑧𝑖 = max (0, 1 − |𝑧| + ∑ 𝑧𝑖

𝑖

)

𝑖

 

⋁ 𝑧𝑖 = min (1, ∑ 𝑧𝑖

𝑖

)

𝑖

(2) 

~𝑧𝑖 = 1 − 𝑧𝑖  

Here, each zi is the truth value of a ground formula, and |z| is the number of ground formulas 

connected using conjunctions. We can see for conjunction, the truth value of the conjunction is 0 

even if only one of the zi is false (i.e., 0). Moreover, if one of zi in the disjunction is true (i.e., 1), 

the truth value of the disjunction is 1 regardless of the other zi. 
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Now there’s only one logical connective left to be modeled: implication. Suppose we have a 

simple implication: Z → Y. Then Z and Y are called the antecedent and consequent of the 

implication, respectively. The implication statement is of great significance to modeling ECG 

rules as many rules can be summarized as “If some evidence Z is observed, then it increases the 

likelihood of diagnosis Y”, which can be concisely described using “Z → Y”. It is worth 

emphasizing that “Z → Y” does not indicate that there’s a causal relationship between Z and Y. 

Rather, the implication “→” here is an abuse of notation to express “… increases the likelihood 

of …”. 

We will implement and compare two methods Modify Pre-Activated Value (MPAV) and 

Hierarchical Lattice (HL) that are capable of incorporating implication statements into ML 

models. 

The first method MPAV is inspired by the work of Li and Srikumar (2019). The basic idea of 

MPAV is to increase the pre-activated value PAVY (i.e., logit, or the raw/unnormalized 

prediction) of consequent Y by an amount proportional to the truth value z of the antecedent Z. 

In other words, the modified prediction �̂� is 

�̂� = 𝜎(𝑃𝐴𝑉𝑌 +  𝜌𝑧)   (3) 

where 𝜎 is the activation function sigmoid and ρ ≥ 0 is a scaling factor that controls the strength 

of the modification.  

The second method HL (Yanagisawa et al., 2022) is based on the lattice method originally 

proposed by Google (Gupta et al., 2016). Suppose we want to train a neural network to learn a 

monotone target function f(𝐱) =
x1

2+ x2
2

2
 where x1 and x2 are inputs. If a standard neural network is 

Figure 12 Lattice with 𝑓(𝒙) =
𝑥1

2+ 𝑥2
2

2
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used to approximate f(x), there is no guarantee that the predicted output 𝑓(𝒙)̂ is monotonically 

increasing with respect to x1 and x2. However, such monotonicity is guaranteed using the lattice 

method. To achieve this, a lattice layer keeps a look-up table used for approximating the input-

output relationships found in data by interpolation. It involves overlaying a standard grid onto 

the input space and acquiring values for predicted output 𝑓(𝒙)̂ at the vertices/intersections of the 

grid. Whenever a test point, x, is evaluated, the predicted output 𝑓(𝒙)̂ is determined through 

linear interpolation from the surrounding lattice values. Take the lattice shown in Figure 12 as an 

example, it has a 5x5 grid and 36 vertices. The lattice layer will keep a look-up table for 

estimated 𝑓(𝒙)̂ values for those 36 vertices. Afterwards, when the lattice layer receives input 

(0.1, 0.7), it will locate the nearest four vertices (i.e., (0, 0.6), (0, 0.8), (0.2, 0.6), and (0.2, 0.8)), 

retrieve their 𝑓(𝒙)̂ from the look-up table, and perform interpolation to get the 𝑓(𝒙)̂ for the input 

(0.1, 0.7). It can be shown that as long as the 𝑓(𝒙)̂ is monotonically increasing with respect to 

the vertices, 𝑓(𝒙)̂ is monotonically increasing with respect to input features as linear 

interpolation is used for inputs that are not vertices (Yanagisawa et al., 2022). HL method 

(Yanagisawa et al., 2022) further improved the lattice method by reducing memory consumption 

and not requiring a projected gradient descent algorithm. In the context of diagnosing a medical 

condition using ECG, the implication statement “Z → Y” can be generally thought of as a 

monotone function, where an increase in the truth value of the antecedent Z leads to an increase 

in the probability of the diagnosis Y. In other words, when there is more evidence (represented 

by Z) to support a particular diagnosis Y, the likelihood of that diagnosis being correct also 

increases. Although this makes intuitive sense, it is worth mentioning that if there are some other 

unconsidered input features that heavily influence f(x), ensuring monotonicity will have a mild 

or even negative impact on the prediction of f(x). We will explore this further in the 

“Experiments” section. 

4.2.3 More General FOL Rules 

4.2.3.1 More complex antecedents 

We may construct a more complex antecedent by connecting terms and formulas using logical 

connectives. Take “(~A ∨ B) ∧ (C ∨ D) → Y” as an example, we can eventually reduce the 

complex antecedent to a truth value using the probabilistic soft logic introduced in the previous 

section. 
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4.2.3.2 More complex consequents 

We can introduce negation and conjunction in the consequents. To begin with, consider the case 

where the system encounters an implication statement with a negated consequent such as “Z → 

~Y”. For the MPAV method, we only need to flip the sign of the modification and the resulting 

modified prediction will be �̂� = 𝜎(𝑃𝐴𝑉𝑌 −  𝜌𝑧). For the lattice method, we can deem the 

statement as ~Y is monotonically increasing with respect to Z, and use Y = ~(~Y) to get the 

predicted probability for diagnosis Y. Moreover, for an implication statement with conjunctive 

consequents such as “Z → Y ∧ X”, we can decompose the statement into several simpler 

implications with only one consequent term (i.e., “Z → Y” and “Z → X”). 

4.2.3.3 Generalized Disjunction 

As can be seen from the ECG interpretation flowcharts and associated FOL rules in Appendix 

A3, the occurrence of antecedents in the form of “at least k out of m formula are true” is not rare. 

For instance, in step 7, at least 2 out of the 5 RVH criteria should be true for the patient to be 

diagnosed with RVH. This can be seen as a generalized version of the disjunction/OR gate, and 

its soft logic can be formally defined as a predicate7 that can take an arbitrary finite number of 

input terms: 

𝐺𝑂𝑅𝑘(𝑧1, 𝑧2, … , 𝑧𝑚) = min (1,
∑ 𝑧𝑖𝑖

𝑘
) (4) 

We can see that for the generalized disjunction to be true, at least k out of the m zi should be true. 

4.3 Architectures 

In this section, we will make use of the distilled objective features and the methods in the 

previous section to build architectures that are to be tested in the “Experiments” section. The 

Multi-Layer Perceptron (MLP) in this section refers to one or more ReLU-activated linear layers. 

The CNN in this section refers to one or more ReLU-activated 1D convolution layers, each 

followed by a max-pooling layer. For both MLP and CNN, Batch Normalization is used to 

regularize the model. Moreover, note that the prediction task is a multi-label task with 21 

possible diagnoses, details of which can be found in Appendix A1. Therefore, averaged Binary 

Cross-Entropy (BCE) loss is used to compare the predicted diagnoses vector �̂� with the ground 

truth diagnoses 𝒚. We will refer to this loss as the Lossdx. Furthermore, the hyperparameters such 

 
7 GOR stands for Generalized OR 
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as the kernel size of the convolution layer are tuned thoroughly for each of the architectures 

below to make a fair comparison between architectures and ensure that the great performance of 

a particular model is not due to random chance. Details of the hyperparameter tuning can be 

found in Appendix A4.  

4.3.1 Baseline CNN 

 

The baseline architecture that we are comparing against is a simple black-box CNN network that 

has not incorporated any medical domain knowledge. As depicted in Figure 13, the baseline 

network will treat the 12 leads of an ECG record as 12 channels of the input and feed the signal 

into a 1D CNN block, the output of which is then fed into an MLP followed by a sigmoid layer 

to generate the final prediction vector �̂�. 

4.3.2 Hard rule system 

Another architecture worth comparing to is a simple rule-based system that only uses the “hard 

version” of the FOL rules. In other words, the truth value is binary (i.e., either 0 or 1) in the hard 

rule system and we may apply the FOL with their traditional definitions. More specifically, in 

the hard rule system, the result of a comparison is binary instead of a real value between 0 and 1. 

Additionally, the consequent of an implication is only true (i.e., 1) if the antecedent is true. This 

architecture is included in the comparison with the intention to let it mimic the deterministic 

solution using fixed ECG rules before the era of ML. It is worth mentioning that while the hard 

rule system may seem completely inflexible, it still has some trainable parameters in the 

ensemble layers at the end. This is due to the fact that there are no established guidelines on how 

to combine a diagnosis’s primary criteria with its ancillary criteria (Khan, 2008). Therefore, the 

ensemble layers should be optimized through training to find an ideal combination of these 

criteria for accurate diagnosis.  

Figure 13 Baseline CNN 
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4.3.3 Soft rule system 

The soft rule system implemented in our framework will use the aforementioned methods to 

incorporate the ECG DDx process’s FOL rules into the ML models. Our system follows the DDx 

steps defined in the “Rapid ECG Interpretation” book, whose detailed flowcharts and 

corresponding FOL rules can be seen in Appendix A3. The following sections introduce the 

overall architecture, followed by demonstrations on how to create individual modules for each 

ECG interpretation step. 

4.3.3.1 Overarching Architecture 

The overarching architecture is illustrated in Figure 14, where the cleaned 12-lead ECG signal of 

shape 12x5000 and the extracted objective features are fed into the Pipeline Module which 

comprises 10 modules called Step Modules. An important mechanism of the soft rule system is 

the “all_mid_output” dictionary/look-up table, which serves as a storage of intermediate 

values/outputs. During the initialization, the Pipeline Module will create an empty 

“all_mid_output” and pass the “all_mid_output” reference to each Step Module. Subsequently, 

each Step Module will create its own “mid_output” dictionary and add an entry to the 

“all_mid_output” using the Step Module’s id as the key and the reference to its “mid_output” as 

the value. In this way, Step Modules can easily communicate with each other, and the pipeline 

can effortlessly aggregate results. 

Figure 14 Overarching architecture of 

the soft rule system 
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We will use two examples to illustrate the benefits of having an “all_mid_output” dictionary. 

Firstly, some steps are dependent on the intermediate results from previous steps (e.g., Step 1-9 

depends on the ECG embeddings extracted in Step 0; Step 3 relies on Step 2’s prediction about 

Bundle Branch Block (BBB)). Instead of passing all the intermediate outputs step by step along 

the pipeline, saving them to the “all_mid_output” allows later steps to directly retrieve only 

relevant midway outputs created in the earlier steps. 

Another example that shows the necessity of the “all_mid_output” dictionary is the Pipeline 

Module. The presence of the “all_mid_output” enables the Pipeline Module to have 

functionalities including but not limited to the ensemble of diagnosis predictions from different 

steps, logging or aggregating intermediate outputs that will be later used for generating diagnosis 

report, getting the total loss that is a weighted sum of different types of losses. Specifically, 

diagnoses such as MI may have supporting evidence from Steps 4, 5, and 8. Therefore, The 

Pipeline Module needs to ensemble diagnosis prediction from those steps. To maximize 

interpretability, a linear layer is used instead of an MLP to perform the ensemble. Then by 

looking at the weight of the linear layer, one can tell which step contributes the most to the 

prediction of that particular diagnosis. Moreover, the total loss at the end has three components: 

Lossdx which is the BCE loss between the ensembled predictions �̂� and the ground truth labels 𝒚, 

the sum of individual Lossfeat from every Step Module, and the sum of Lossδ from every Step 

Module. To put it more formally: 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑑𝑥 + 𝛼∑𝐿𝑜𝑠𝑠𝑓𝑒𝑎𝑡 + 𝛽∑𝐿𝑜𝑠𝑠𝛿  (5) 

where α and β are the weight constants that respectively control the relative emphasis on 

“making feature impressions similar to the objective features” and “making the soft threshold 

closer to the fixed threshold”. 
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4.3.3.2 Step Module 

Now that the overall architecture is introduced, we may now focus on building individual 

modules for each ECG interpretation step. 

The “Step 0: ECG Embedding” Module, presented in Figure 15, is markedly different from other 

Step Modules as its sole responsibility is to extract a compressed representation of the input ECG 

record. Although it’s quite similar to the baseline CNN, an important distinction here is that the 

input is a single lead of the ECG record. The lead signal will first go to a CNN block that accepts 

1-channel inputs, the result of which is then concatenated with the lead index and further fed into 

an MLP to create the embedding for this lead signal. The motivation behind extracting 

embeddings for each lead individually is that later modules can get embeddings only for the 

leads that they should focus on. This is of great significance to the explainability as the doctors 

will only focus on certain leads at a specific step. If all later Step Modules use an overall 

Figure 16 Step 2 of ECG Interpretation 

Figure 15 Module for Step 0 ECG Embedding  
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embedding that captures information from all leads, then those Step Modules may cheat by 

looking at information from other leads and reach conclusions that human doctors cannot 

comprehend. Additionally, we apply the same embedding extracting network to different leads 

instead of having an individual network for each lead. The intuition here is that the morphology 

of the cardiac cycle generally does not change drastically during the 10-second ECG recording 

period. Therefore, given sufficient tuning and training, the network presented in Figure 15 should 

be able to capture the difference between leads. In this way, the number of trainable parameters 

is reduced by a factor of 12, which will reduce overfitting and speed up training. 

The Step Modules other than Step 0 are generally similar in terms of how to construct them 

using soft rules introduced earlier. We will first go through the meaning of symbols/shapes in 

flowcharts for ECG interpretation, using which one can easily translate the FOL rules into sub-

modules of Step Modules. As illustrated in Figure 16, each step of ECG interpretation identifies 

the leads that the step should focus on, possible diagnoses to be made in this step, and 

corresponding flowcharts describing rules on how to perform DDx to make those diagnoses. The 

associated FOL rules are written in the textbox beside the flowcharts. Along the direction of 

flow, the flowchart will go through a series of diamond-shaped decision nodes and eventually 

reach possible diagnoses (green rounded rectangles) in the current step. If a decision node is 

based on the comparison (e.g., PR duration > 200ms), the node will calculate the corresponding 

feature impression using the soft threshold introduced in the “Formula with Comparison 

operators” section. The feature impressions have subscript “_imp” to differentiate them from the 

objective features. The green diagnoses node at the end of each flowchart also has a subscript 

“_imp” in the associated FOL rules to indicate that it is an impression of the diagnosis at that 

particular step. This subscript is to differentiate them from the final prediction of the diagnoses 

which are ensembles of diagnosis impressions at certain steps.  
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After obtaining a basic understanding of the flowchart, one can effortlessly create a Step Module 

using sub-modules provided by our framework, Take Step 2 shown in Figure 16 as an example. 

Step 2 involves two comparisons and two implications. Hence, we will have two comparison 

operator sub-modules (each with their trainable w and δ) and two implication sub-modules. 

Then, depending on the method used (either MPAV or HL), the implication sub-module will 

adopt one of the architectures shown in Figure 17 and Figure 18. Similarly, we can create other 

Step Modules according to the flowcharts in Appendix A3. 

4.4 ECG-XAI framework 

We have invested a significant amount of effort to ensure that our framework is both user-

friendly and scalable. 

To begin with, our framework provides users with the flexibility to customize targeted 

diagnoses, objective features, and modules for each step to suit their specific requirements. This 

enables them to easily add more diagnoses, objective features, or rules as needed. 

Additionally, the Pipeline Module that encapsulates all Step Modules is designed with many 

functionalities targeting explainability. For example, users can specify which intermediate 

outputs to aggregate using the Pipeline Module, and those outputs will be saved as a CSV file at 

the end of the training process. The intermediate outputs that can be aggregated are not limited to 

feature impressions and implication statements' antecedents and consequents. Other terms, such 

as each Step Module's Lossfeat and Lossδ, as well as comparison operators' w and δ, can also be 

Figure 17 Implication sub-module using MPAV 

Figure 18 Implication sub-module using HL 
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logged. In addition to aggregating intermediate output, users can require the Pipeline Module to 

plot one intermediate output against another when the training ends. Another crucial 

explainability functionality of the Pipeline Module is its ability to generate diagnosis reports. 

When given an input ECG record, the Pipeline Module processes it and generates a Markdown 

document containing the corresponding differential diagnoses list, along with explanations of 

how it was derived. With these functionalities of the Pipeline Module, users can easily verify 

whether the rules incorporated are working as expected during training. Once the training is 

complete, users may examine the aggregated intermediate outputs and the diagnosis report to 

ensure that the feature impressions, diagnosis impressions, and explanations are meaningful and 

make sense. 

Last but not least, our framework is designed to be scalable from the ground up, starting with the 

creation of classes that can be applied to a variety of medical waveform signals. For instance, the 

'Ecg' class inherits from the more general 'Signal' class, which encapsulates functionalities 

applicable to not just ECG, but also other types of signals. This approach allows us to effortlessly 

extend the framework to include other medical waveform signals whose rules can be represented 

in our system, without the need to repeat functionalities like caching preprocessed signals for 

each signal type. Another example of scalability is the Rule class, which serves as the root class 

for all rule classes, including FOL rules. While our framework currently supports rules 

expressible in FOL, we can expand it to include other types of rules, such as complex shape 

constraints. 
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5. Experiments 
In this section, we will compare the different architectures listed in the “Methodology” section 

and explore the effect of MPAV’s ρ. Subsequently, the best model will be tested on the test set to 

inspect its generalizability. Moreover, at the end of this section, we will examine the diagnoses 

report created for an ECG record in the test set to verify that the generated feature impressions 

and explanation along the DDx process make sense to cardiologists. 

As aforementioned, the dataset used is PTB-XL. The train, validation, and test sets were derived 

from stratified samples of the PTB-XL dataset, with an approximate ratio of 6:2:2 (for the 

number of ECG records in each set). The prediction task performed was a multi-label task and a 

total of 21 diagnoses were considered, whose details can be found in Appendix A1. The 

optimizer used was Adam with an exponential learning rate schedular. Each model had its 

hyperparameter tuned by the Optuna framework (Akiba et al., 2019), the details of which can be 

found in Appendix A4. Then the models with the best-performing hyperparameter configurations 

were tested on the validation set and compared with each other. The evaluation metrics used 

were accuracy (ACC) and macro-averaged Area Under the Receiver Operating Curve (AUROC). 

Moreover, it should be pointed out that the weight constants α and β for the loss of the soft rule 

system were not automatically tuned as the tuning framework might set them to zero or close to 

zero to maximize the performance, in which case the explainability would be heavily impaired. 

Instead, the α and β were grid searched, each in the set {0.01, 0.1, 1, 10, 100}. A good 

configuration that strikes a balance between performance and explainability was found to be α = 

0.1 and β = 10, which was adopted in the soft rule systems for the following experiments. 

5.1 Compare Four Architectures 

Architecture ACC AUROC 

Baseline CNN 0.9163 0.7926 

Soft Rule System with MPAV 0.9202 0.8360 

Soft Rule System with HL 0.9132 0.7173 

Hard Rule System 0.8471 0.6829 

Table 4 Performances of the four architectures 
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We started by comparing four architectures: baseline CNN, soft rule system with MPAV, soft 

rule system with HL, and hard rule system. The results of this experiment are collected in Table 

4. 

Overall, the soft rule system that incorporated MPAV demonstrated the highest level of 

performance. It had significant improvements over the hard rule system, and it outperformed the 

baseline CNN. This observation highlights that the integration of FOL not only enhances the 

interpretability of the system's predictions but also contributes to the system's overall 

performance.  

We can interpret their performances in terms of the model’s flexibility. On one hand, the hard 

rule system has very few trainable parameters and is nearly inflexible, which may hinder its 

ability to effectively fit the training set. On the other hand, the baseline CNN may be too flexible 

as it lacks domain knowledge and has not been regularized using ECG rules. As a result, the 

search space for the baseline model is effectively larger than that of the soft rule system, making 

it more challenging for the baseline model to identify optimal model weights without guidance 

from the ECG rules.  

In addition, it was observed that the HL-version soft rule system’s performance was even worse 

than the baseline. To verify that the lattice layer was functioning as expected, the model with HL 

was tested on the validation set, and the system’s impression of antecedents and consequents of 

implication statements were aggregated and recorded. Take the implication “RADimp → 

LPFBimp” in step 9 (Axis Module) as an example, whose corresponding portion in the flowchart 

is extracted from Appendix A3 and presented in Figure 19 for ease of reference. By plotting the 

Figure 19 Part of Step 9’s (Axis Module) flowchart Figure 20 LPFBimp vs RADimp (HL-version system) 
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HL-version system’s impression of the consequent (i.e., LPFBimp) against the impression of the 

antecedent (i.e., RADimp) in Figure 20, we can see that the consequent impression is indeed 

monotonically increasing with respect to the antecedent impression. However, if we plot the 

validation set’s ground truth labeling of LPFB against the objective feature RAD calculated 

using fixed thresholds, we will notice that the correlation is weak, and it does not strictly follow 

a monotone relationship as shown in Figure 21. A reason for this is that the criteria involving 

cardiac axis deviation such as RAD are only ancillary, and the main criteria for LPFB cannot be 

easily encoded using FOL as it involves complex shape constraints on the QRS complex. 

Consequently, although RAD is suggestive of LPFB, the presence of RAD alone is not sufficient 

for a definitive LPFB diagnosis. Therefore, the relationship between RAD and LPFB may not be 

monotone since patients with a high likelihood of RAD may not meet the main shape criteria for 

LPFB. This may also explain the poor performance of the hard rule system as its implications are 

a special case of monotone function where the consequent is equal to the antecedent (e.g., 

LPFBimp = RADimp in the hard rule system) 

In contrast, if the soft rule system uses MPAV, the implication statement serves more as a 

suggestion and the system need not enforce a monotone relationship. In such cases, the 

relationship between the LPFBimp and the RADimp is depicted in Figure 22. In a way, the MPAV 

system can automatically fill in the gaps when some diagnosis criteria/rules are not provided. 

Meanwhile, for rules that are fed into the system, the MPAV method can provide guidance on 

the prediction according to those rules. 

Figure 21 Ground truth LPFB vs objective RAD Figure 22 LPFBimp vs RADimp (MPAV-version soft 

rule system with ρ = 8) 
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Another observation that can be made is regarding the relative importance of diagnosis 

impressions from different modules for the same diagnosis. For instance, in the case of inferior 

MI (IMI), we can examine the absolute weights of the IMI ensemble linear layer, which 

ultimately produces the IMI prediction by combining the diagnosis impressions obtained 

according to ST elevation (STE), ST depression (STD), pathological Q wave, and inverted T 

wave. The respective absolute weight is 2.331, 1.536, 0.772, and 0.532. By dividing these values 

by their sum, one can get the relative importance of each diagnosis impression: 0.451, 0.297, 

0.149, and 0.103. This aligns with the common ECG DDx practice as the STE is considered the 

most significant evidence of MI, followed by STD and pathological Q, while the inverted T does 

not always appear in patients with MI and therefore has a relatively small weight. 

5.2 ρ in MPAV 

ρ value ACC AUROC 

0 0.9126 0.7778 

2 0.9106 0.7968 

4 0.9131 0.8086 

8 0.9202 0.8360 

16 0.9195 0.8298 

32 0.9125 0.7368 

Table 5 Performances of MPAV Systems with Different ρ 

Since the MPAV system is the best-performing architecture, we will further explore the role of 

the scaling factor ρ in MPAV. In this experiment, ρ was grid searched in {0, 2, 4, 8, 16, 32} and 

the corresponding MPAV system’s performances are encapsulated in Table 5. 

It is evident that the ρ = 8 performed the best. Meanwhile, it is noteworthy that we had 

undesirable performances of MPAV when ρ was either too small (e.g., ρ = 0) or too large (e.g., ρ 

= 32). 

On one hand, if ρ is too small, little suggestion is provided by the implication rule and the 

MPAV system is not leveraging the domain knowledge sufficiently. As a result, the performance 

may be even worse than the baseline CNN. In some sense, MPAV with very small ρ such as 0 is 

introducing extra structures while failing to harness the benefits provided by the extra structures 
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(i.e., the guidance provided by the FOL). Thus, it is not a surprise to see that very small ρ results 

in poor performance. 

On the other hand, if ρ is too large, the impression of a consequent will be nearly 1 even for a 

small truth value of the matching antecedent. To illustrate, we will again plot LPFBimp against 

RADimp for a large ρ like 32 and the result is shown in Figure 23. This plot reveals that the 

modification of PAV is too drastic when ρ is set to 32, as compared to the plot generated when ρ 

= 8, shown in Figure 22. In such cases, the MPAV system loses useful information contained in 

antecedent impressions, as most consequent impressions are close to 1 due to the overly large 

value of ρ. 

Therefore, it is essential to identify an appropriate value of ρ that injects the right amount of 

domain knowledge into the model. 

5.3 Model Inspection on the Test Set 

To determine whether the best model selected (i.e., MPAV system with ρ = 8) during the training 

process can perform well on new, unseen data, the model was evaluated on the test set. The test 

set was not used in any way to train or adjust the model, ensuring that the evaluation provides a 

reliable measure of the model's generalization ability. The evaluation revealed that the model 

performed well on the test set, achieving an accuracy of 0.9157 and an AUROC of 0.8047. These 

Figure 23 LPFBimp vs RADimp (MPAV-version soft 

rule system with ρ = 32) 
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results indicate that the performance of the model did not drop significantly when evaluated on 

unseen data, suggesting that the model has good generalization ability. 

Moreover, to ensure that the explanations generated by our ECG-XAI system are meaningful to 

doctors, a diagnosis report is generated for a test set ECG record with diagnosis labels sinus 

rhythm (SR) and anterior MI (AMI). The ECG record’s 12-lead plot is shown in Figure 24, and 

the detailed diagnosis report can be found in Appendix A5. According to the report, the system’s 

prediction of SR and AMI are 1.000 and 0.997 respectively. Although they closely match the 

ground truth labels, we will explore the report and inspect whether the explanations that lead to 

these conclusions make sense. 

For SR, we will take a look at Step 1’s report, which focuses on assessing the rhythm and heart 

rate of the ECG record. Following the flowchart for Step 1, we should first check whether the 

rhythm is sinus8. This is in fact the case as shown in lead II. Hence, we rule out AFIB and AFLT. 

Moreover, ARRH9 is not observed as the R-R intervals are generally consistent. Hence SARRH 

should be excluded. The generated report confirms that the system has successfully ruled out 

AFIB, AFLT, and SARRH, using the correctly calculated features.  Furthermore, the heart rate 

can be estimated by multiple 6 to the number of cycles in a lead, as the recording is 10 seconds 

long. In the case of this ECG record, there are 12 cardiac cycles during this 10-second period and 

the estimated heart rate is 72 bpm which closely matches the system’s calculated heart rate of 

 
8 Each P wave in lead II is positive AND precedes a QRS complex 
9 max R-R interval – min R-R interval > 120ms 

Figure 24 12-lead plot for an ECG record with SR and AMI 
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71.813 bpm. Since the heart rate falls within the range of 60 to 100 bpm, we can conclude that 

the patient has SR, which matches the result in the diagnosis report. 

While diagnoses of SR are generally straightforward, diagnoses for MI such as AMI are 

challenging as there are multiple factors to consider. The hallmark of the AMI is ST segment 

elevations (STE) in at least two contiguous10 precordial leads (V1 to V6). The diagnosis report 

shows that the system’s impressions for STEs in leads V1 to V6 are 0.718, 0.868, 0.799, 0.641, 

0.253, and 0.254, respectively. We can confirm this by examining the ST segments in precordial 

leads in Figure 24, where STEs are observed in V1 to V4. In addition to STE, ST segment 

depression (STD), pathological Q wave, and inverted T wave are the three ancillary features of 

AMI. The diagnosis report shows that the system’s corresponding feature impressions for these 

features are generally small (i.e., less than 0.5 and close to 0), which aligns with what we can 

observe in Figure 24, where there is no evident STD, pathological Q wave, or inverted T wave. 

In short, our system shows great generalizability, and the above case study of a test set ECG 

record demonstrated our system’s capability to provide comprehensible explanations for its 

generated differential diagnoses list.  

  

 
10 contiguous leads are next to each other anatomically (e.g., V1 and V2) 
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6. Conclusion 
In this paper, we have developed an XAI framework for incorporating ECG rules in the form of 

FOL into ECG AI models. Although the current framework only supports FOL rules, the 

framework is designed with scalability in mind and can be efficiently extended to include other 

types of constraints and rules. With the concept of feature impression, we can reveal the 

underlying ML model’s understanding of explainable ECG features. Additionally, using 

probabilistic soft logic and logical connectives outlined in the “Methodology” section, feature 

impressions can be further combined to create other interpretable features.  

Our experiments showcase the benefits of incorporating ECG rules into our system. The first 

experiment illustrates how the inclusion of these rules can enhance model performance, and it 

also demonstrates the system's ability to automatically fill in gaps in the rules when rules cannot 

be provided in the form of FOL. Moreover, the second experiment emphasizes the importance of 

controlling the amount of domain knowledge injected into the system. Furthermore, our system's 

test set performance highlights its great generalizability. The generated diagnosis report provides 

valuable insights into the model's decision-making process, which is beneficial for cardiologists 

to interpret the diagnoses predicted by our ECG AI.  
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Appendix 

A1 List of Diagnoses 

The current ECG-XAI framework can predict a wide range of diagnoses summarized in the 

following table. Moreover, the table also shows the diagnoses’ abbreviations, superclass, and the 

number of training ECG records with those diagnoses. The definition of each diagnosis 

superclass and its corresponding abbreviations can be found in Table 2 and Table 3, respectively. 

Diagnosis Name Abbreviation 
Diagnosis 

Superclass 

# Training 

Records 

Normal NORM 

NORM 

4896 

Sinus Arrhythmia SARRH 383 

Sinus Bradycardia SBRAD 279 

Sinus Rhythm SR 8070 

Sinus Tachycardia STACH 276 

Atrial Fibrillation AFIB 
ARR 

580 

Atrial Flutter AFLT 12 

1st Degree AV Block AVB 

CD 

305 

Intraventricular Conduction 

Disturbance 
IVCD 297 

Left Anterior Fascicular Block LAFB 703 

Left Bundle Branch Block LBBB 82 

Left Posterior Fascicular Block LPFB 61 

Right Bundle Branch Block RBBB 678 

Wolff-Parkinson-White syndrome WPW 16 

Left Atrial Enlargement LAE 

HYP 

155 

Left Ventricular Hypertrophy LVH 721 

Right Atrial Enlargement RAE 41 

Right Ventricular Hypertrophy RVH 41 

Anterior Myocardial Infarction AMI 

MI/ISC 

1185 

Inferior Myocardial Infarction IMI 1493 

Lateral Myocardial Infarction LMI 473 
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A2 Objective Features 

All objective features used in this project, their abbreviations, and their explanations are 

encapsulated in the table below. If x appeared in the table, it refers to one of the leads (i.e., x ∈ 

{I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6}). 

Feature Name Abbreviation Explanation 

Heart Rate HR Heart Rate of the patient 

Bradycardia BRAD Whether the patient has bradycardia (HR < 60 bpm) 

Tachycardia TACH Whether the patient has tachycardia (HR > 100 bpm) 

Sinus SINUS 
Whether the rhythm is sinus: Each P wave in lead II should be 

positive AND precedes a QRS complex 

RR interval range RR_DIFF max R-R interval – min R-R interval 

PR duration PR_DUR Duration of the PR segment 

Prolonged PR LPR Whether the PR interval is prolonged 

QRS duration QRS_DUR Duration of the QRS complex 

Prolonged QRS LQRS Whether the QRS complex is prolonged 

Prolonged QRS for WPW LQRS_WPW Whether the QRS complex is prolonged by WPW’s standards 

Short PR SPR Whether the PR interval is shortened 

ST segment amplitude ST_AMP_x Mean Amplitude of ST segment in lead x 

ST Elevation STE_x Whether the ST segment is elevated in lead x 

ST Depression STD_x Whether the ST segment is depressed in lead x 

Poor R-wave Progression PRWP 
Whether R waves are not within desired ranges for at least one lead 

in V1-V4 

Q wave duration Q_DUR_x Duration of the QRS complex in lead x 

Q wave amplitude Q_AMP_x Amplitude of Q wave in lead x 

Pathological Q wave PATH_Q_x Whether the Q wave in lead x is pathological 

P wave duration P_DUR_x Duration of P wave in lead x 

P wave amplitude P_AMP_x Amplitude of P wave in lead x 

Prolonged P wave LP_x Whether the P wave is prolonged in lead x 

Peaked P wave PEAK_P_x Whether the P wave is peaked (has high amplitude) in lead x 

Age AGE Age of the patient 

Old age AGE_OLD Whether the patient’s age is greater than 30 

Male MALE Whether the patient is male 

R wave amplitude R_AMP_x Amplitude of R wave in lead x 

S wave amplitude S_AMP_x Amplitude of S wave in lead x 

R/S Ratio RS_RATIO_x Ratio between amplitudes of R and S waves in lead x 

Peaked R wave PEAK_R_x Whether the R wave is peaked in lead x 

Deep S wave DEEP_S_x Whether the S wave is deep (has low amplitude) in lead x 

Dominant R wave DOM_R_x Whether R wave amplitude is greater than that of the S wave 

Dominant S wave DOM_S_x Whether S wave amplitude is greater than that of the R wave 

T wave amplitude T_AMP_x Amplitude of T wave in lead x 

Inverted T wave INVT_x Whether the T wave is inverted in lead x 

Sum of QRS QRS_SUM_x The QRS area above the baseline minus the QRS area below 

Postive QRS POS_QRS_x The QRS is positive in lead x 

Normal cardiac axis NORM_AXIS Whether the patient has a normal cardiac axis 

Left axis deviation LAD Whether the patient’s cardiac axis deviates towards the left 

Right axis deviation RAD Whether the patient’s cardiac axis deviates towards the right 
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A3 ECG Interpretation Flowchart 

The flowcharts below summarize the 9 steps of ECG interpretation adapted from the book 

“Rapid ECG Interpretation” (Khan, 2008). While the meanings of most symbols/shapes are 

introduced in the “Step Module” section, there are some additional symbols/shapes to take note 

of. Firstly, a flowchart begins with a start node that is either red or purple. The red start node 

indicates that the following rules/decisions are parts of the main criteria of possible diagnoses 

and the purple one indicates that the following rules are ancillary criteria that should be used in 

combination with other main criteria. Moreover, we have some orange nodes which indicate 

some intermediate features that aid our diagnosis process (e.g., whether each of the 5 criteria of 

RVH is satisfied at step. 
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A4 Hyperparameter Tuning 

The hyperparameter tuning framework used in this project is Optuna (Akiba et al., 2019), which 

uses Bayesian optimization techniques to search hyperparameters in the search space provided 

by the user. The search space for different hyperparameters is summarized in the Table below. 

Hyperparameter Type Is discrete 
Is sampled in 

the log domain 
Range 

Learning rate False True [1e-5, 1e-1] 

Adam’s β1 False False [0.9, 0.99] 

Exponential learning rate scheduler’s 

multiplicative factor 
False False [0.95, 1) 

Number of convolution layers in CNN True False [1, 5] 

Number of output channels of a 

convolution layer 
True True [4, 256] 

Convolution’s kernel size True False [2, 24] 

Convolution’s stride True False [1, 3] 

Max-pooling’s kernel size True False [1, 3] 

Max-pooling’s stride True False [1, 3] 

Number of linear layers in MLP True False [1, 5] 

Number of hidden neurons in a linear 

layer 
True True [4, 256] 

HL version implication’s lattice size 

(the granularity of the lattice) 
True False [2, 6] 

 

The models were trained using a maximum of 50 epochs for each hyperparameter configuration. 

A total of 100 sets of hyperparameter configurations were attempted for each architecture, and 

the best-performing configuration was selected for comparison in the "Experiment" section. 
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A5 Diagnosis Report 

The ECG-XAI framework can automatically generate diagnosis reports according to the ECG 

DDx process in Appendix A3. As an example, a diagnosis report has been generated for an ECG 

record in the test set that exhibits SR and Acute Myocardial Infarction AMI. The generated 

report is appended at the end of this document, and the corresponding 12-lead plot for this ECG 

record can be found in Figure 24. 
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